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Abstract

We introduce a new machine translation task
for generating macaronic language target
sentences. Our high-level goal is to serve adult
students of a foreign language who cannot yet
read fluently in the target language. Mixed-
language translation can be used to obtain
practice reading material that is engaging and
appropriate for their skill level. Our method
allows learners or teachers to control which
parts of a source sentence should be translated.

We examine domain-adversarial training
to overcome the inherent reluctance of an
encoder-decoder model to switch languages
within a sentence and devise a simple yet
effective method to create synthetic macaronic
language training, validation, and test data.

1 Introduction

Learning a foreign language is a daunting task.
Even with the availability of numerous self-directed
“gamified” learning applications such as Duolingo
(von Ahn, 2013), students face an uphill challenge.
The lack of engaging learning/practice materials
is particularly challenging for adult beginner
students. Students often have to undergo tedious
memorization to acquire and retain basic vocabulary
in order to advance to the next stage. Reading
macaronic language documents is a way for
students to instead acquire vocabulary in context.
Such documents are used in the recent Swych
(2015) and OneThirdStories (2018) apps.

We envision a macaronic language MT system
being used in foreign language instruction. To cre-
ate macaronic language materials for a unit on body
parts, for example, the teacher may find a narrative
of a medical checkup written in the student’s native
language, and mark words that are to be translated
into the foreign language. Alternatively, the teacher
could start with a foreign-language narrative and
translate difficult parts back into the student’s native

Markup That
de

shows you that we have people who
de

are capable of doing great things.
Output That zeigt you that we have people who

fähig sind, großartige Dinge zu bewirken.

Table 1: Overview of our controllable macaronic lan-
guage generation task. The user (a teacher or a student)
should be able to “markup” portions of the text that get
translated. The unmarked text remains in English.

language to make the text comprehensible. Or the
student could select these difficult parts for themself,
by clicking as they read the text; or they could be
selected automatically by a personalized macaronic
language based instructional framework (Labutov
and Lipson, 2014; Renduchintala et al., 2016a,b).

The focus of this paper is the development and
evaluation of NMT systems tailored to generate
macaronic language target translations and respect
source-side annotations, which indicate desired
level of mixing. Table 1 gives an overview of the
task. The markup indicates which portions of
the sentence the system should translate. These
portions need not be linguistically identifiable as
phrases. Notice that the translations are not merely
word replacements (glosses); the output translates
the phrase with reordering that is consistent with
the target language (German) word order.

2 Method

We propose two augmentations to the LSTM
based encoder-decoder architecture for neural
MT (Bahdanau et al., 2014; Luong et al., 2015;
Hochreiter and Schmidhuber, 1997). The first seeks
to endow the system with the flexibility to switch
languages while generating a target sequence. The
second makes it pay attention to input annotations
that indicate the target language for each token.



2.1 Target Language Adversarial Training

The decoder of an NMT can be thought of as a lan-
guage model that is conditioned on the source input.
Sequential dependencies in the output sequence
are explicitly encoded into the auto-regressive
generation of each target token. Thus, in the usual
setting where the decoder is trained on monolingual
output sentences, it will learn to output such
sentences. This is true even if the monolingual
training sentences are not all in the same language.

Could we encourage the NMT model to output
macaronic language sentences even when it is
trained only on a mix of monolingual sentences?
We propose applying domain-adversarial multi-task
training (Ganin et al., 2016) to solve this issue. The
auto-regressive property dictates that an output
token yj conditions on the decoder hidden state
sj , where j is the output word index. We want our
model to be auto-regressive in terms of the target to-
kens but agnostic as to the language of these tokens.
That is, we want the decoder hidden states sj to
retain syntactic and semantic information about the
previous tokens but to forget their target language.

When training the NMT system to produce a
target sequencey, we also know the language—A or
B—of each word in y. Let g∈{A,B}|y| denote this
sequence of labels. We train a separate neural mod-
ule that tries to predict the language label gj from
the NMT decoder’s hidden state sj(Equation 1):

Ldis=logp(g0:J |s0:J ;φ,θ) (1)

As the language discriminator depends on the
decoder state, this objective depends on all of the
NMT parametersθ, as well as on the discriminator’s
own parameters φ (which are fewer).

The discriminator parameters φ are trained
to maximize Ldis (Equation 2), but the NMT
parameters θ are adjusted to minimize Ldis while
maximizing translation accuracy. We follow Ganin
et al. (2016) and apply the reverse gradient −∂Ldis

∂θ
by using a gradient reversal layer (GRL). In short,
we update the two sets of parameters via

φ←φ+λ
∂Ldis

∂φ
(2)

θ←θ+
∂LNMT

∂θ
−λ· ∂Ldis

∂θ
(3)

2.2 Desired Language Source Features

Our next goal is to give the end user of the
macaronic language translation model the ability to
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Figure 1: An example FST L which encodes phrase
alignments between a source [x1, x2, x3] and target
[y1,y2,y3]. Path 0,1,2,3 encodes single-word phrases,
while 0,5,3 for example enodes a one-to-many phrase
x1 :y1,y2 and a many-to-one phrase x2,x3 :y3.

control which words/phrases should be translated.
We realize this by adding source features to indicate
the desired language on the target side. Each
token in the source is annotated with a feature to
specify whether the token should be left in the
source language A or translated into language B.
These are not hard constraints, however, as we want
the model to retain enough flexibility to produce
“fluent” macaronic language translations.

We augment the standard NMT model to accept
an additional stream of features f ∈{A,B}|x| along
with the source sequencex. We follow the approach
in Sennrich and Haddow (2016) and concatenate
the word embedding and feature embedding and
then project the concatenated vector back to the
size of the original word embedding:

h=BiLSTM([e(x;θe);e(f ,θf )]) (4)

where e(.;θ) is an embedding function with two
sets of parameters: θe for source tokens and θf for
source-language features.

3 Synthetic Data Creation

3.1 Multilingual Data

For each ([x1,x2, ... ,xn], [y1,y2, ... ,ym]) training
pair in the original dataset, we create two new
training examples (see examples in Multilingual
row in Table 2) with the desired language features
in the input and language labels in the output. The
“copy” example has input-output pair of the form
([x1|A , x2|A , ... , xn|A ], [x1|A , x2|A , ... , xn|A ])
and the “translate” example has the form
([x1|B ,x2|B ,...,xn|B ],[y1|B ,y2|B ,...,ym|B ]).

Our hope is that the modified NMT model will
learn that whenever an input token xj is associated
with fj=B, the corresponding output token(s) are a
translation of the input, and when the feature is fj=
A the source token appears in the target unchanged.



3.2 Macaronic Language Training Data
We also consider including synthetic training exam-
ples in which the target sequence is itself macaronic
language. We first word-align training bitext using
FastAlign (Dyer et al., 2013) and then apply the
“grow-diagonalize-finalize” heuristic (Koehn et al.,
2003). We then extract consistent phrase pairs from
each source-target pair (Och and Ney, 2000; Koehn
et al., 2003). The extracted phrase pairs are encoded
as a Finite State Transducer (FST) P . Composing
the phrase translation machine P , with a source
FST X (on the input) and target FST Y on the
output side results in a phrase-segmentation lattice
FSTL. An example lattice is shown in Figure 1.

L=X◦P ◦Y (5)

Each path p through L defines a unique phrase-
segmentation mapping between the source sentence
and target sentence. We go over each arc in pand
construct a new source sequence (with a desired
language feature) and a new macaronic language
target sequence, which corresponds to the source se-
quences’ desired language feature (see Algorithm 1)
using a biased coin flip r ∼B(1,γ). The training
examples from the macaronic language creation pro-
cedure are shown in the “Mixed” section of Table 2.

Algorithm 1 Mixed-Lang. Extraction
Require: L . Phrase-segmentation Lattice
Require: A,B . Src-Tgt Language labels
1: x,y=[],[] . initial source and mixed-target
2: p∼L . sample path form Lattice
3: for x :y ∈ SortedArcs(p) do
4: r∼B(1,γ)
5: if r=1 then
6: x+=[w|B ∀ w∈x] . add B feature to input
7: y+=[w|B ∀ w∈y] . place Tgt phrase in output
8: else
9: x+=[w|A ∀ w∈x] . add A feature to input

10: y+=[w|A ∀ w∈x] . place Src phrase in output
11: return{x,y} . new source and mixed target pair

4 Related Work

Our work is inspired by domain adaptation in
NMT. Specifically the notion of domain mixing
via adversarial training and target-side domain
features introduced in Britz et al. (2017). Tars and
Fishel (2018) also treat multi-domain models as
multi-lingual models and examine different source
and target featurization (Östling and Tiedemann,
2017; Johnson et al., 2017).

The use of source-side features in domain
adaptation (Kobus et al., 2016; Zeng et al., 2018)

and for NMT in general (Sennrich and Haddow,
2016) has also been studied recently. Using
source-side features as explicit control has also
been presented in Sennrich et al. (2016).

To the best of our knowledge, extensions of
these methods to produce mixed language have
not been attempted. Furthermore, in all previous
applications, training data was freely available, and
there was no requirement to create synthetic data.

5 Experiments

5.1 Data

We use the En-De dataset from the International
Workshop on Spoken Language Translation
(IWSLT) 2014 dataset, which contains approxi-
mately 167k training, 7.2k validation, and 6.7k test
sentence pairs (Cettolo et al., 2014). We first convert
the training data into 334k Multilingual training
examples using the method described in Section 3.1.
Next we synthetically create our macaronic
language training data using the method described
in Section 3.2. We set γ=0.5 in Algorithm 1, Out
of the 167k original training examples, we extract
145k macaronic language training examples. The
reduction in examples is due to sentence pairs with
“null” word alignments in either the source or target
side and/or inadequate phrase size. Both these
conditions result in a phrase-segmentation lattice
(Equation 5) with no paths. The maximum phrase
size in the phrase-extraction procedure was set to
10. A smaller phrase-limit drastically increases
the number of “null” lattices. Furthermore, a
large phrase size exposes the NMT model to more
word reordering and will help the model retain
performance for full translation. We also convert
the IWSLT validation data into macaronic language
examples and set γ=0.5.

5.2 NMT Model

We used a 2-layer biLSTM encoder and a 2-Layer
LSTM decoder model with input-feeding attention
mechanism for all our experiments (Luong et al.,
2015). The embedding size, encoder, and decoder
recurrent size was set to 512 (256 in the encoder
for each direction). Dropout of 0.2 was used
between each computational block of the NMT
model (Srivastava et al., 2014). We rescale the
dimensions of our updates (2)–(3) using the Adam
optimization method (Kingma and Ba, 2014).



Source Text (Lang) Target Text(Lang)

Original That is great (en) Das ist großartig

Multilingual That|en is|en great|en That is great
That|de is|de great|de Das ist großartig

Macaronic Language

That|de is|de great|en Das ist great
That|de is|en great|de Das is großartig
That|en is|en great|de That is großartig

. . . . . .

Table 2: Synthesized training examples from the original source-target pair. For each training example there are
two possible multilingual training examples, one that completely copies the input to the output and another that
completely translates the input. Mixed-language examples on the other hand can be numerous. We show 3 example
macaronic language examples for the sentences pair. Details on how we extract macaronic language examples are
discussed in Section 3.2. The list of mixed examples in the table is not exhaustive.

Training
Data

Model
Baseline Adversarial

Multilingual 53.18 55.28
Mixed-language 56.48 56.75
Mixed+Multilingual 61.22 60.95
Lex 54.79

Table 3: Lower-cased BLEU of NMT Models trained
and tested on synthetic mixed-translations outputs.

5.3 Synthetic Validation Results

Unlike standard translation tasks, our task does not
have any “gold” macaronic language references,
which forces us to convert existing validation data
into macaronic language data to tune our models.
We use BLEU as our evaluation metric and treat
the synthesized macaronic language targets as
reference.

Table 3 shows ablation results of NMT models
trained with only Macaronic Language data, only
Multilingual data and both Mixed and Multilingual
data on the synthetic validation data. We see that
exposing the NMT system to macaronic language
training is vital to performance. Using the target side
adversarial loss (Adv) improves the BLEU score by
∼ 2 points when no macaronic language training
is used. However, when the models are exposed to
macaronic language outputs during training, the ad-
versarial loss does not make an impact, suggesting
that the adversarial loss is most useful to counter the
mismatch between training and testing.1 For qualita-
tive analysis, the inputs and model predictions from
the Mixed+Multilingial model are shown in Table 4.

We also compare these models with a simple
lexical look-up model, which picks the most likely

1We searched over five λ values 0.1,0.2,1.0,5.0,10.0 and
settled on 1.0.

German tokenif the English token has source
feature B, or simply copies the English word to
the output if it has source feature A. The BLEU
evaluation metric rewards the models for predicting
output tokens in the correct sequence, regardless of
whether they were translations or merely copied.2

5.4 Synthetic Test Set Results

Again we use synthetic data for test set evaluation
extracted from the IWSLT test data. For a fair
evaluation, we use a word-alignment model trained
on a separate dataset instead of the IWSLT training
data (which was used to create our synthetic training
data). This ensures that our test set does not implic-
itly find phrase segmentations, which the training
data has seen. We use the first 100k sentence pairs
from the WMT 2014 English-German data to
extract word alignments (and from them phrase-
segmentations) for the synthetic test set (Bojar et al.,
2014). Furthermore, we analyze our models with
test data created over the range of γ = [0,1] in 0.1
increments. At each γ we generate 5 different test
sets. We evaluate each data ablation model trained
with adversarial loss on these test sets. The test re-
sults are shown in Figure 2. We find that the lexical
look-up model which was a reasonable contender
at small γ sharply deteriorates after 0.5. We see that
multilingual trained model suffers in the middle
ranges of γ when compared against the macaronic
language trained models, but recovers again as γ
is close to 1. We are encouraged to see that the com-
bination of both data types sustains performance
over the entire range of mixing, indicating that the

2For the lexical look-up model the English output is guaran-
teed to be correct making it very competitive at small γ values



Markup He gave a talk about how education
de

and school kills creativity.
Prediction He gave a talk about how education und schulen kreativität tötet .

Markup
de

It was sombody who was trying to ask a question about Javascript.
Prediction Es war jemand , der versuchte , to ask a question about Javascript .

Markup
de

We were standing on the edge of thousands of acres of
de

cotton.
Prediction Wir standen am rande of thousands of acres of baumwolle .

Markup And we’re building upon innovations of
de

generations who went before us.
Prediction And we’re building upon innovations of generationen , die vor uns gingen .

Table 4: Examples of inputs and predicted outputs by our NMT model trained on both mixed and multilingual data
with adversarial loss. We see that the macaronic language translations are able to correctly order German portions
of the sentences, especially at the sentence ending. The source-features have also been learned by the NMT model
and translations are faithful to the markup. The case, tokenization and italics added in post.
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Figure 2: Lower-cased BLEU scores for different
models on synthetic test sets with different γ values(See
Algorithm 1). Each point is an average of 5 different
test sets, each generated with the specific γ value.

different data types have a complementary effect.

6 Conclusion

We introduce a new task of macaronic language
generation and propose a method to create synthetic
training, validation, and test data to learn macaronic
language generating models. Our approach substan-
tially outperforms a word look-up based baseline
(61.2 vs 54.7 BLEU points). Even when trained
on parallel text without synthetic mixed data, we
outperform the baseline with our language-agnostic
adversarial loss.

We hope to use macaronic language generation
to further the creation of personalized practice
material for language learners. We leave this
downstream evaluation for future work.
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M Cettolo, J Niehues, S Stüker, L Bentivogli, and M Fed-
erico. 2014. Report on the 11th IWSLT evaluation
campaign, IWSLT 2014. In IWSLT-International
Workshop on Spoken Language Processing, pages
2–17. Marcello Federico, Sebastian Stüker, François
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