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Abstract

This thesis explores a new framework for foreign language (L2) education. Our frame-

work introduces new L2 words and phrases interspersed within text written in the student’s

native language (L1), resulting in a macaronic document. We focus on utilizing the inherent

ability of students to comprehend macaronic sentences incidentally and, in doing so, learn

new attributes of a foreign language (vocabulary and phrases). Our goal is to build an

AI-driven foreign language teacher, that converts any document written in a student’s L1

(news articles, stories, novels, etc.) into a pedagogically useful macaronic document. A

valuable property of macaronic instruction is that language learning is “disguised” as a

simple reading activity.

In this pursuit, we first analyze how users guess the meaning of a single novel L2 word

(a noun) placed within an L1 sentence. We study the features users tend to use as they guess

the meaning of the L2 word. We then extend our model to handle multiple novel words and

phrases in a single sentence, resulting in a graphical model that performs a modified cloze

task. To do so, we also define a data structure that supports realizing the exponentially many

macaronic configurations possible for a given sentence. We also explore ways to use a neural
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cloze language model trained only on L1 text as a “drop-in” replacement for a real human

student. Finally, we report findings on modeling students navigating through a foreign

language inflection learning task. We hope that these form a foundation for future research

into the construction of AI-driven foreign language teachers using macaronic language.

Primary Reader and Advisor: Philipp Koehn

Committee Member and Advisor: Jason Eisner

Committee Member: Kevin Duh
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Chapter 1

Introduction

Growing interest in self-directed language learning methods like Duolingo (Ahn, 2013),

along with recent advances in machine translation and the widespread ease of access to a

variety of texts in a large number of languages, has given rise to a number of web-based

tools related to language learning, ranging from dictionary apps to more interactive tools

like Alpheios (Nelson, 2007) or Lingua.ly (2013). Most of these require hand-curated lesson

plans and learning activities, often with explicit instructions.

Proponents of language acquisition through extensive reading, such as Krashen (1989),

argue that much of language acquisition takes place through incidental learning—when a

learner is exposed to novel vocabulary or structures and must find a way to understand them

in order to comprehend the text. Huckin and Coady (1999) and Elley and Mangubhai (1983)

observe that incidental learning is not limited to reading in one’s native language (L1) and

extends to reading in a second language (L2) as well. Free reading also offers the benefit of
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being a “low-anxiety” (or even pleasurable) source of comprehensible input for many L2

learners (Krashen, 2003).

There is considerable evidence showing that free voluntary reading can play a role in

foreign language learning. Lee, Krashen, and Gribbons (1996) studied international students

in the United States and found the amount of free reading of English to be a significant

predictor to judge the grammatically of complex sentences. The amount of formal study

and length of residence in the United States were not strong predictors. In Stokes, Krashen,

and Kartchner (1998) students learning Spanish were tested on their understanding of the

subjunctive. Students were not informed of the specific focus of the test (i.e. that it was on

the subjunctive). The study found that attributes such as formal study, length of residence

in foreign speaking country and the student’s subjective rating of the quality of the formal

study they receive failed to predict performance on the subjunctive test. The amount of

free reading, however, was a strong predictor. Constantino et al. (1997) showed that free

reading was a strong predictor of the performance in Test of English as a Foreign Language

(TOEFL). However, they did find that other attributes such as time of residence in the

United States and amount of formal study were also significant predictors of performance.

Kim and Krashen (1998) go beyond self-reported reading amounts and were able to find a

correlation between the performance of students in the English as a foreign language test

and performance on the “author recognition” test. In the author recognition test, subjects

indicate whether they recognize a name as an author among a list of names provided to

them. The author recognition test has also been used in other first language studies as well
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such as Chinese (Lee and Krashen, 1996) Korean (Kim and Krashen, 1998) and Spanish

(Rodrigo, McQuillan, and Krashen, 1996). In the case of second language acquisition,

however, learning by reading already requires considerable L2 fluency, which may prove

a barrier for beginners. Thus, in order to allow students to engage with the L2 language

early on, educators may use texts written in simplified forms, texts specifically designed for

L2 learners (e.g. texts with limited/focused vocabularies), or texts intended for young L1

learners of the given L2. “Handcrafted Books” has been proposed by (Dupuy and McQuillan,

1997) as a way to generate L2 reading material that is both accessible and enjoyable to

foreign language students. Handcrafted Books are essentially articles, novels or essays

written by Foreign language students at an intermediate level and subsequently corrected by

a teacher. The student writers are instructed not to look-up words while writing, which helps

keep the resulting material within the ability of beginner students. While this approach gives

educators control over the learning material, it lacks scalability and suffers from similar

issues as hand-curated lesson plans. As a result, a learner interested reading in a second

language might have few choices in the type of texts made available to them.

Our proposal is to make use of “macaronic language,” which offers a mixture of the

learner’s L1 and their target L2. The amount of mixing can vary and might depend on the

learner’s proficiency and desired content. Additionally, we propose automatically creating

such “macaronic language,” allowing our learning paradigm to scale across a wide variety

of content. Our hope is that this paradigm can potentially convert any reading material into

one of pedagogical value and could easily become a part of the learner’s daily routine.
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1.1 Macaronic Language

Why do the French only eat one egg for breakfast?
Because one egg is un œuf.

The term “Macaronic” traditionally refers to a mash-up of languages, often intended to be

humorous. Similar to text that contains code-switching, typical macaronic texts are intended

for a bilingual audience; however, they differ from code-switching as they are not governed

by syntactic and pragmatic considerations. Macaronic texts are also “synthetic” in the sense

that they are traditionally constructed for the purpose of humor (bilingual puns) and do

not arise naturally in conversation. In this thesis, however, we use the term macaronic for

bilingual texts that have been synthetically constructed for the purpose of second language

learning. Thus, our macaronic texts do not require fluency in both languages and their usage

only assumes that the student is fluent in their native language. This thesis investigates

the applicability of macaronic texts as a medium for life-long second language learning.

Flavors of this idea have been done before, which we cover in Chapter 2, but it is especially

worth noting that the earliest published macaronic memoir we could find is “On Foreign

Soil” (Zolf and Green, 2003) which is a translation of an earlier Yiddish novel (Zolf, 1945).

Green’s translation begins in English with a few Yiddish words transliterated, as the novel

progresses, entire transliterated Yiddish phrases are presented to the reader.
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1.2 Zone of proximal development

Second language (L2) learning requires the acquisition of vocabulary as well as knowledge

of the language’s constructions. One of the ways in which learners become familiar with

novel vocabulary and linguistic constructions is through reading. According to Krashen’s

Input Hypothesis (Krashen, 1989), learners acquire language through incidental learning,

which occurs when learners are exposed to comprehensible input. What constitutes “compre-

hensible input” for a learner varies as their knowledge of the L2 increases. For example, a

student in their first month of German lessons would be hard-pressed to read German novels

or even front-page news, but they might understand brief descriptions of daily routines.

Comprehensible input need not be completely familiar to the learner; it could include novel

vocabulary items or structures, whose meanings they can glean from context. Such input

falls in the “zone of proximal development” (Vygotsky, 2012), just outside of the learner’s

comfort zone. The related concept of “scaffolding” (Wood, Bruner, and Ross, 1976) consists

of providing assistance to the learner at a level that is just sufficient enough for them to

complete their task, which in our case is understanding a sentence. In this context, macaronic

text can offer a flexible modality for L2 learning. The L1 portion of the text can provide

scaffolding while the L2 portion, if not previously seen by the student, can provide novel

vocabulary and linguistic constructions of pedagogical value. So, if we re-purpose the pun

from above into a macaronic text for L2 french learners (whose L1 is English) we might

construct the following with the hope that the readers can infer the meanings of un and
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œuf.

Why do the French have only un egg for breakfast?
Because un œuf is enough.

In addition to vocabulary, macaronic scaffolding can extend to syntactic structures as

well. For example,consider the following text: “Der Student turned in die

Hausaufgaben, that the teacher assigned had.” Here, German vocab-

ulary is indicated in bold and German syntactic structures are indicated in italics. Even a

reader with no knowledge of German is likely to be able to understand this sentence by

using context and cognate clues. One can imagine increasing the amount of German in

such sentences as the learner’s vocabulary increases, thus carefully removing scaffolding

(English) and keeping the learner in their zone of proximal development.

1.3 Our Goal: A Macaronic Machine Foreign

Language Teacher

Our vision is to build an AI foreign-language teacher that gradually converts documents

(stories, articles, etc.) written in a student’s native language into the L2 the student wants

to learn, by automatically replacing the L1 vocabulary, morphology, and grammar with

the L2 forms (see 1.1). This “gradual conversion” involves replacing more L1 words (or

phrases) with their L2 counterparts, and occurs as the leaner slowly gains L2 proficiency (say

over a period of days or weeks). We don’t expect significant language proficiency increase
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Figure 1.1: A schematic overview of our goal.

during the course of a single novel, however, we expect more conversions mainly due to the

repeated appearance of key vocabulary items during the novel. Thus, L2 conversions can

accumulate over the course of the novel. This AI teacher will leverage a student’s inherent

ability to guess the meaning of foreign words and constructions based on the context in

which they appear and similarities to previously known words. We envision our technology

being used alongside traditional classroom L2 instruction—the same instructional mix

that leads parents to accept inventive spelling (Gentry, 2000), 1 in which early writers are

encouraged to write in their native language without concern for correct spelling, in part so

they can more fully and happily engage with the writing challenge of composing longer and

more authentic texts without undue distraction (Clarke, 1988). Traditional grammar-based

instruction and assessment, which uses “toy” sentences in pure L2, should provide further

scaffolding for our users to acquire language by reading more advanced (but macaronic)

text.
1Learning how to spell, like learning an L2, is a type of linguistic knowledge that is acquired after L1

fluency and largely through incidental learning (Krashen, 1993).
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Automatic construction of comprehensible macaronic texts as reading material—perhaps

online and personalized—would be a useful educational technology. Broadly speaking, this

requires:

1. A data structure for manipulating word (or phrase) aligned bitexts so they can be

rendered as macaronic sentences,

2. Modeling student’s comprehension when they read these macaronic sentences (i.e.

what can an L2 learner understand in a given context?), and

3. Searching over many possible candidate comprehensible inputs to find one that is

most suited to the student, balancing the amount of new L2 they encounter as well as

ease of reading.

In schematic Figure 1.1 the AI teacher performs the points (2) and (3) from above. While

(1) defines the input (along with meta-data) required by the AI teacher to perform (2) and

(3). There are several ways of realizing each of the three points above. In this thesis, the

each chapter explores a subset of these three points. Chapter 3 and Chapter 4 cover points

(1) and (2) using human data to construct student models. Chapter 5 describes another AI

teacher that can accomplish (2) and (3) but makes some simplifying assumptions about the

input data (1). Chapter 6 also details another kind of student modeling (point (2)) for a

verb-inflection learning task and focuses on short-term longitudinal modeling of student

knowledge as they progress through this task.

The points made above can also be recast from a Reinforcement Learning perspective.
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The data structure we design defines the set of all possible actions an agent (the AI teacher)

can take. The agent is acting upon the student’s observations and tries to infer their

comprehension of a sentence (and, more generally, their level of proficiency of L2). Thus,

the student is the environment that the agent is acting upon. Finally, the search algorithm

that the AI teacher employs is the policy the agent follows. This perspective also suggests

that the policy could involve planning for long-term rewards (which in our framework is L2

proficiency) using policies that look-ahead into the future to make optimal decisions in the

present. However, we leave planning in the macaronic space to future work. In this thesis,

we limit ourselves to greedy-search techniques that do not consider long-term rewards.

A reasonable concern is whether exposure to the mixture of languages a macaronic text

offers might actually harm acquisition of the “correct” version of a text written solely in the

L2. To address this, our proposed interface uses color and font to mark the L1 “intrusions”

into the L2 sentence, or the L2 intrusions into L1 sentence. We again draw a parallel to

inventive spelling and highlight that the focus of a learner should be more on continuous

engagement with L2 content even if it appears “incorrectly” within L2 texts.

1.4 Macaronic Data Structures

Several strategies can be followed to create the required data structures so that an AI teacher

can manipulate and render macaronic texts. One such structure for an English-French bitext

is shown in Figure 1.2. We refer to a single translation pair of a source sentence and target
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sentence as bitext. We use word alignments, which are edges connecting words from the

source sentence to those in the target sentence in the bitext, and convert the bitext into a

set of connected units. While the majority of units contain single works, note that some

of the units contain phrases with internal reorderings, such as une telle or such une.

Each unit is a bipartite graph with French words on one end and English words on the

other. The AI teacher can select different cuts in each unit to render different macaronic

configurations (See Table 1.2). Figure 1.2 shows the graph data structure and Table 1.2

lists some macaronic renderings or configurations that can be obtained from different cuts

in the graph data structure. We construct these data structures automatically, but in our

experiments we correct them manually as word alignments are noisy and sometime link

source and target tokens that are not translation of each other. Furthermore, intermediate

tokens in the macaronic such as The Arizona and submit in Figure 1.2 can not be

obtained by merely using bitext and word alignments. These intermediate forms were

added manually as well. We refer to the items (rows of text) in Table 1.2 as macaronic

configurations. Note that macaronic configurations are macaronic sentences; we use the

term “configuration” to denote the set of macaronic sentences from a single piece of content

(i.e. from a single bitext with its supporting data structures).

An alternative strategy is to only use lexical replacements for L1 tokens. This data

structure strategy assumes the availability of L2 glosses for each token in the L1 sentence.

The units formed in this case are simple “one-to-one” mappings (see Figure 1.3). This data

structure is less expressive in the sense that it can only render macaronic configurations
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(i)

(ii)
Arizona was the first to introduce such a requirement

L’ Arizona fut le premier a presenter une telle exigence

telle une a telle une such

such une telle a a such

The Arizona submit

Figure 1.2: Macaronic data structure extracted from word-alignments. The black lines

represent edges that replace a unit, usually from one language (black for English) to another

(blue for French). For example edge (i) is replaces first with premier and vice-versa.

In some cases the edges connect two English tokens (such as introduce and submit)

as in intermediate step between introduce and presenter. In other cases the black

substitution edge define a single substitution even when there are more than one tokens in

the unit. For example, such a is connected to such une via a substitution edge (ii). The

orange edges perform a reordering action, for example such a can be transformed into a

such by traversing an orange edge. Only two edges are marked with roman numerals for

clarity.

Arizona was the first to introduce such requirement

Arizonafut le premier a introduire telle exigence

a

une

Figure 1.3: A Simplified Macaronic data structure that only considers word replacements

without any reordering of words.
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L’ Arizona fut le premier a presenter une telle exigence

L’ Arizona fut le first a presenter une telle exigence

...

L’ Arizona was the first a presenter une telle exigence

L’ Arizona was the first a presenter telle une requirement

L’ Arizona was the first a presenter telle a requirement

L’ Arizona was the first a presenter such a requirement

...

L’ Arizona was the first to introduce such a requirement

Arizona was the first to introduce such a requirement

Table 1.1: Examples of possible macaronic configurations from the macaronic data structure

depicted in Figure 1.2. This data structure supports actions that reorder phrases within the

macaronic sentence, thus generating substrings like telle une and a such which are

both not in the word-ordering of the language they are in.
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Arizona fut le premier a introduire telle une exigence

Arizona fut le premier a introduire telle une exigence

Arizona was le premier a introduire telle une exigence

...

Arizona was le premier a introduire such a requirement

...

Arizona was the first to introduire such a requirement

Arizona was the first to introduce such a requirement

Table 1.2: Examples of possible macaronic configurations from the simplified macaronic

data structure Figure 1.3. Note that the words (even French words) are always in the English

word-order. Thus, using this data structure we can not obtain configurations that include

substrings like a such or une telle. We envision this data structure to be useful for a

native speaker of English learning french vocabulary, but it is also possible that a student

seeing English words in French word order can learn about French word ordering. Then,

gradually, we can replace the English words (in French word order) with French words (in

French word order) forming fluent French sentences.
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in the L1 word order. That is, even though it can display L2 words, these words are only

displayed in their L1 orderings. This limitation simplifies the AI teacher’s choice of actions

but also limits the resulting content to only have value for learning foreign vocabulary. Note

that even this simple structure allows for exponentially many possible configurations that

the AI teacher must be able to search over.

The data structures described above are a subset of more complex structures. It is

possible to construct data structures that connect subword units from the English side to an

equivalent subword unit on the French side. Such a data structure could be used to render

macaronic sentences and are macaronic at the word-level. Furthermore, the data structure

could also support non-contiguous reorderings. We leave such data structures for future

work and focus on the more straightforward local-reorderings and simple word replacement

methods mainly to allow for fast search procedures.

The graph structure in Figure 1.2 could be made more complex with hyper-edges

connecting a set of tokens from the English side (such a) to a set of tokens in the French

side (une telle) of the text.
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1.5 User Modeling

1.5.1 Modeling Incidental Comprehension

In order to deliver macaronic content that can be understood by a learner, we must first build

a model of a learner’s comprehension abilities. Would a native English speaker learning

German, be able to comprehend a sentence like The Nil is a Fluss in Africa?

Would they correctly map the German words Nil and Fluss to Nile and river? Is

there a chance to incorrectly map the German words to other plausible English words,

for example, Namib and desert? We approach this comprehension modeling problem

by building probabilistic models that can predict if an L2 student might comprehend a

macaronic sentence when they read it. One way to estimate comprehension is to ask L2

students to guess the meaning of L2 words or phrases within the macaronic sentence. A

correct guess implies that there are sufficient clues, either from the L1 words in the sentence,

from the L2 words, or from both, to comprehend the sentence.

We begin with a simplified version of macaronic sentences wherein only a single word (a

noun) is replaced with its L2 translation. For example: The next important Klima

conference is in December. We build predictive models that take the L1 context

and the L2 word as input and predict what a novice L2 learner (studying German in this

example) might say is the meaning for the novel word Klima.

Next, we address the case in which multiple words in the macaronic sentence are
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converted into their L2 form. Consider the earlier example: The Nil is a Fluss

in Africa. In such cases, we need to jointly predict the meaning a student would assign

to all the L2 words. This is necessary because a student’s interpretation of one word will

influence how they interpret the remaining L2 words in the sentence. For example, if the

student assigns the meaning Nile to Nil, this might influence them to guess that Fluss

should be interpreted as River. Alternatively, if they interpret Fluss as forest, they

might then guess that Nil is the name of a forest in Africa. In other words, there is a cyclical

dependency between the guesses that a student makes. Details of our proposed models for

capturing incidental learning are discussed in Chapter 3. Code used for our experiments is

available at https://github.com/arendu/MacaronicUserModeling.

1.5.2 Proxy Models for Incidental Comprehension

One way to build models of human incidental comprehension is to collect data from humans.

In the previous section (with details in Chapter 3) we require humans to read a candidate

macaronic text and provide feedback as to whether the text was comprehensible and whether

the L2 words in the text were understood. Using this feedback (i.e. labeled data) we build

a model of a “generic” student. Collecting this labeled data from student annotators is

expensive. Not only from a data collection point of view but also for students, as they would

have to give feedback on candidate macaronic texts generated by an untrained machine

teacher.

As an alternative to collecting labeled data in this way, we investigate using cloze
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language models as a proxy for models of incidental comprehension. A cloze language

model can be trained with easily available L1 corpora from any domain (that potentially is of

interest to a student). We can refine the cloze language model with real student supervision

in an online fashion as a student interacts with macaronic text generated by the AI teacher.

In other words, this cloze language model can be personalized to individual students by

looking at what they are able to understand and making updates to the model accordingly.

Essentially, the cloze language model allows us to bootstrap the macaronic learning setup

without expensive data collection overhead. Details of our use of proxy user models are

described in Chapter 5.

1.5.3 Knowledge Tracing

Apart from modeling incidental comprehension, an AI teacher would benefit from modeling

how a student might update their knowledge based on different pedagogical stimuli, which

in our case take the form of different macaronic sentences. Furthermore, in the case of “pop

quizzes” (see Chapter 4), the student may receive explicit feedback for their guesses. Ideally,

such explicit feedback would also cause the student to update their knowledge. Here an

“update” could entail learning (adding to their knowledge) or forgetting (removing from

their knowledge). The longitudinal tracking of knowledge a learner has as they proceed

through a sequence of learning activities is referred to as “knowledge tracing” (Corbett

and Anderson, 1994). We study a feature-rich knowledge tracing method that captures a

student’s acquisition and retention of knowledge during a foreign language phrase-learning
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task. Note that in we deviate from our macaronic paradigm for this task and focus on

short-term longitudinal modeling of a students knowledge in a phrase-learning task that

teaches L2 verb inflections. In this study, we use flash-cards instead of macaronic texts,

mainly because of the ease in obtaining longitudinal participation in user studies. We

model a student’s behavior as making predictions under a log-linear model, and adopt a

neural gating mechanism to model how the student updates their log-linear parameters in

response to feedback. The gating mechanism allows the model to learn complex patterns of

retention and acquisition for each feature, while the log-linear parameterization results in an

interpretable knowledge state.

We collect human data and evaluate several versions of the model. We hypothesize

that human data collection for verb inflection is not as problematic as the full macaronic

setting as there are only a handful (a few dozen inflectional forms even for morphological

rich languages) inflectional forms to master. Secondly, we do not have to subject student

annotators to stimuli has been generated by untrained AI teachers, making the data collection

process a beneficial for the student annotators as well. Details of our proposal for knowledge

tracing are presented in Chapter 6. The code and data for our experiments is available at

https://github.com/arendu/vocab-trainer-experiments.
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1.6 Searching in Macaronic Configurations

In §1.5.1 and §1.5.2 we introduce the notion of modeling human comprehension in macaronic

settings (either using actual human data or by proxy models). However, our AI teacher still

has the difficult task of deciding which specific macaronic sentence to generate for a student

reach some new piece of text. Even in the case of the simplified lexical macaronic data

structure, where each L1 word maps to a single L2 word and there are no phrase re-orderings,

there are exponentially many possible macaronic configurations that can be generated. The

AI teacher must decide on a particular configuration that will be rendered or displayed

to a reader by searching over (some subset) of the possible configurations and picking a

good candidate. We propose greedy and best-first heuristics to tackle this search problem

and also design a scoring function that guides the search process to find good candidates

to display. While simple, we find the greedy and best-first heuristics approach offers an

effective strategy for finding a macaronic configuration with a low computational footprint.

In order to continuously update our language model in response to a student’s real-time

interactions, the speed of our search is a critical factor. The greedy best-first approach offers

a solution that prioritizes speed. To measure the goodness of each search state, our scoring

function compares the initially trained L1 word embeddings with the incrementally trained

L2 word embeddings and assigns a score reflecting the proximity of the L2 word embeddings

to their L1 counterparts. We conduct intrinsic experiments using this proposed scoring

function to determine viable search heuristics. Further details on our scoring function and
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heuristic search are presented in Chapter 5. The code for our experiments are available here

https://github.com/arendu/Mixed-Lang-Models.

1.7 Interaction Design

While macaronic texts can be “consumed” as static documents, the prevalence of e-readers

and web-based reading interfaces allows us to take advantage of a more interactive reading

and learning experience. We propose a user interface that can be helpful to a human learner,

while also enabling the AI teacher to adapt itself towards a specific learner. Specifically,

when a macaronic document is presented to the student, we provide functionality that allows

a student to click on L2 words or phrases in order to reveal their L1 translation. This helps

the reader to progress if they are struggling with how to interpret a given word or phrase.

Furthermore, we can log a student’s clicking interactions and use them as feedback for

our machine teacher. Many clicks within a sentence might indicate that the macaronic

configuration of the sentence was beyond the learner’s reading abilities, and the teacher can

update its models accordingly. Apart from this, there is also the option of the teacher not

revealing the L1 translation, but rather prompting the student to first type in a guess for the

meaning of the word. This process helps to disambiguate between those students who click

just for confirmation of their knowledge and those who genuinely don’t know the word at all.

By looking at what a student has typed, we can determine how close the student’s knowledge

is to actual understanding of the word or phrase. Details of our Interaction Design proposal
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are described in Chapter 4, but we leave the construction of an interactive system which

iteratively refines its model for future work.

1.8 Publications

This thesis is mainly the culmination of the following six publications (including one

demonstration track publication and one workshop publication):

1. Analyzing Learner Understanding of Novel L2 Vocabulary

Rebecca Knowles, Adithya Renduchintala, Philipp Koehn and Jason Eisner, Confer-

ence on Computational Natural Language Learning (CoNLL), 2016.

2. Creating Interactive Macaronic Interfaces for Language Learning.

Adithya Renduchintala, Rebecca Knowles, Philipp Koehn and Jason Eisner, System

Description, Annual Meeting of the Association for Computational Linguistics (ACL),

2016.

3. User Modeling in Language Learning with Macaronic Texts.

Adithya Renduchintala, Rebecca Knowles, Philipp Koehn and Jason Eisner, Annual

Meeting of the Association for Computational Linguistics (ACL), 2016.

4. Knowledge Tracing in Sequential Learning of Inflected Vocabulary

Adithya Renduchintala, Philipp Koehn and Jason Eisner, Conference on Computa-

tional Natural Language Learning (CoNLL), 2017.
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5. Simple Construction of Mixed-Language Texts for Vocabulary Learning

Adithya Renduchintala, Philipp Koehn and Jason Eisner. Annual Meeting of the

Association for Computational Linguistics (ACL) Workshop on Innovative Use of

NLP for Building Educational Applications, 2019

6. Spelling-Aware Construction of Macaronic Texts for Teaching Foreign-Language

Vocabulary

Adithya Renduchintala, Philipp Koehn and Jason Eisner. Empirical Methods in

Natural Language Processing (EMNLP), 2019
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Related Work

Early adoption of Natural Language Processing (NLP) and speech technology in education

was mainly focused on Summative Assessment, where a student’s writing, speaking, or

reading is analyzed by an NLP system. Such systems, essentially assigns a score to the

input. Prominent examples include Heilman and Madnani (2012), Burstein, Tetreault, and

Madnani (2013) and Madnani et al. (2012). More recently, NLP systems have also been

used to provide Formative Assessment. Here, the system provides feedback in a form that a

student can act upon and improve their abilities. Formative Assessment has also been studied

in other areas of education such as Math and Science. In language education, Formative

Assessment may take the form of giving a student qualitative feedback on a particular part

of the student’s essay. For example, suggesting a different phrasing. Such systems fall

along the lines of intelligent and adaptive tutoring solutions designed to improve learning

outcomes. Recent research such as Zhang et al. (2019) and commercial solutions such as
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Grammarly (2009) are expanding the role of NLP in formative feedback and assessment.

An overview of NLP-based work in the education sphere can be found in Litman (2016).

There is also lines of work that are not within the definitions of Summative or Formative

assessment. For example, practice question generation is the task of creating pedagogically

useful questions for a student allowing them to practice without the need of a human teacher.

(Du, Shao, and Cardie, 2017) and (Heilman and Smith, 2010) is one of the newer research

which focused on question generation for reading comprehension. Prior to that (Mitkov and

Ha, 2003) used rule-based methods to generate questions.

There has also been NLP work specific to second language acquisition, such as Özbal,

Pighin, and Strapparava (2014), where the focus has been to build a system to help learners

retain new vocabulary. As previously mentioned, mobile and web-based apps for second

language learning such as like Duolingo (Ahn, 2013) are popular among learners as they

allow self-paced study and hand-crafted curricula. While most of these apps have “gamified”

the learner’s experience, they still demand dedicated time from the learner.

The process of generating training data for Machine Translation systems also have

potential to be language learning tools. Hermjakob et al. (2018) is a tool that allows human

annotators to generate translations (target references) from source sentences in a language

they do not read. The tool presents a source sentence (for which a reference target is required)

to a human annotator in romanized form along with phrasal glosses of the romanized-source

text using a look up table. Hermjakob et al. (2018) observed that by simply allowing the

annotators to translate source sentences (with their supporting interface) the annotators

24



CHAPTER 2. RELATED WORK

learned vocabulary and syntax over time. A similar observation was made in Hu et al. (2011)

and Hu, Bederson, and Resnik (2010) who also built tools to obtain reference translations

from human annotators who do not read the source language.

The work in this thesis, however, seeks to build a framework based on incidental

learning when reading macaronic passages from documents such as news articles, stories,

or books. Our approach does not rely on hand-made curricula, does not present explicit

instructions, and (hopefully) can be used by foreign language students in the daily course

of their lives.1 Our goal is that this would encourage continued engagement, leading to

“life-long learning.” This notion of incidental learning has been explored in previous work as

well. Chen et al. (2015) create a web-based plugin that can expose learners to new foreign

language vocabulary while reading news articles. They use a dictionary to show Chinese

translations of English words when the learner clicks on an English word in the document

(their prototype targets native English speakers learning Chinese). When a particular English

word is clicked, the learner is shown that word’s Chinese translation. Once the application

records the click, it then determines whether the user has reached a certain threshold for

that word and automatically replaces future occurrences of the English with its Chinese

translation. The learner can also click on the Chinese translation, at which point they receive

a multiple choice question asking them to identify the correct English translation. While

they don’t use surrounding context when determining which words to teach, the learner

has access to context in the form of the rest of the document when making multiple-choice

1Variations of our framework could (if the learner chooses) provide explicit instructions and make the task
more learning focused at the expense of casual reading.
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guesses. Our work is also related to Labutov and Lipson (2014), which also tries to leverage

incidental learning using mixed L1 and L2 languages. Whereas their work uses surprisal

to choose contexts in which to insert L2 vocabulary, we consider both context features and

other factors such as cognate features. Further, we collect data that gives direct evidence of

the user’s understanding of words by asking them to provide English guesses, rather than

indirectly, via questions about sentence validity. The latter indirect approach runs the risk of

overestimating the student’s knowledge of a word; for instance, a student may have only

learned other linguistic information about a word, such as whether it is animate or inanimate,

rather than learning its exact meaning. In addition, we are not only interested in whether

a mixed L1 and L2 sentence is comprehensible; we are also interested in determining a

distribution over the learner’s belief state for each word in the sentence. We do this in an

engaging, game-like setting, which provides the user with hints when the task is too difficult

for them to complete.

Incidental learning can be viewed as a kind of “fast mapping,” a process by which

children are able to map novel words to their meaning with relatively few exposures (Carey

and Bartlett, 1978). Fast mapping is usually studied as a mapping between a novel word and

some concept in the immediate scene. Carey and Bartlett (1978) studied whether 3 year old

children can map a novel word, for example“chromium,” to an unfamiliar color (olive-green)

using a “referent-selection” task, which required a subject to retrieve the correct unfamiliar

object from a set of objects. Children were given instructions such as bring the chromium

tray, not the blue one. It was observed that children were able to perform such mappings
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quickly. Subsequently, Alishahi, Fazly, and Stevenson (2008) constructed a probabilistic

model and were able to tune this model to fit the empirical observations of previous fast

mapping experiments. The model experiences a sequence of utterances Ut in scenes St.

Each utterance contains words w ∈ Ut, and the “scene” contains a set of concepts m ∈ St.

With each Ut, St pair, the model parameters p(m | w), were updated using an online EM

update. At the end of a sequence of Ut, St t ∈ 1, . . . T pairs, the final model parameters were

used to simulate “referent-selection” and retention tasks. We can view the student’s task (in

our macaronic setting) as an instance of cross-lingual structured fast-mapping, where an

utterance is a macaronic sentence and the student is trying to map novel foreign words to

words in their native language.

We are also encouraged by recent commercial applications that use a mixed language

framework for language education. Swych (2015) claims to automatically generate mixed

language documents while OneThirdStories (2018) creates human generated mixed-language

stories that begin in one language and gradually incorporate more and more vocabulary and

syntax for a second language. Such new developments indicate that there is both space and

demand in the language learning community for further exploration of language learning

via mixed languages modalities.

In the following chapters, we detail our experiments with modeling user comprehension

in mixed language situations, as well as proposing a simplified process for generating

macaronic text without initial human student intervention. Finally, we also model ways to

track student knowledge as they progress through a language learning activity.
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Modeling Incidental Learning

This chapter details our work on constructing predictive models of human incidental learning.

Concretely, we cast the modeling task as a prediction task in which the model predicts

if a human student can guess the meaning of a novel L2 word when it appears with the

surrounding L1 context. Apart from giving the model access to the context, we also provide

the model with features from the novel word itself, such as spelling and pronunciation

features, as these would all aid a human student in their guess of the novel word’s meaning.

Recall that this model is essentially a model of the environment, taking the reinforcement

learning perspective of our macaronic learning framework (from §1.5.1), that the agent (the

AI teacher) acts upon.
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3.1 Foreign Words in Isolation

We first study a constrained setting where we present novice learners with new L2 words

inserted in sentences otherwise written in their L1. In this setting only a single L2 word is

present in each sentence. While this is not the only possible setting for incidental acquisition

(§3.2 discusses the same task for the “full” macaronic setting), this experimental design

allows us to assume that all subjects understand the full context, without needing to assess

how much L2 they previously understood. We also present novice learners with the same

novel words out of context. This allows us to study how “cognateness” and context interact,

in a well-controlled setting. We hypothesize that cognates or very common words may be

easy to translate without context, while contextual clues may be needed to make other words

guessable.

In the initial experiments we present here, we focus on the language pair of English

L1 and German L2, selecting Mechanical Turk users who self-identify as fluent English

speakers with minimal exposure to German. We confine ourselves to novel nouns, as we

expect that the relative lack of morphological inflection in nouns in both languages1 will

produce less noisy results than verbs, for example, which naive users might incorrectly

inflect in their (English) responses.

Even more experienced L2 readers will encounter novel words when reading L2 text.

Their ability to decipher a novel word is known to depend on both their understanding

1Specifically, German nouns are marked for number but only rarely for case.
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of the surrounding context words (Huckin and Coady, 1999) and the cognateness of the

novel word. We seek to evaluate this quantitatively and qualitatively in three “extreme”

cases (no context, no cognate information, full context with cognate information). In doing

so, we are able to see how learners might react differently to novel words based on their

understanding of the context. This can serve as a well-controlled proxy for other incidental

learning settings, including reading a language that the learner knows well and encountering

novel words, encountering novel vocabulary items in isolation (for example on a vocabulary

list), or learner-driven learning tools such as ones involving the reading of macaronic text.

3.1.1 Data Collection and Preparation

We use data from NachrichtenLeicht.de, a source of news articles in simple German

(Leichte Sprache, “easy language”) (Deutschlandfunk, 2016). Simple German is intended

for readers with cognitive impairments and/or whose first language is not German. It

follows several guidelines, such as short sentences, simple sentence structure, active voice,

hyphenation of compound nouns (which are common in German), and use of prepositions

instead of the genitive case (Wikipedia, 2016).

We chose 188 German sentences and manually translated them into English. In each

sentence, we selected a single German noun whose translation is a single English noun. This

yields a triple of (German noun, English noun, English translation of the context). Each

German noun/English noun pair appears only once2 and each English sentence is unique, for

2The English word may appear in other sentences, but never in the sentence in which its German counterpart
appears.
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Task Text Presented to Learner Correct Answer

word Klima climate

cloze The next important conference is in December. climate

combined The next important Klima conference is in December. climate

Table 3.1: Three tasks derived from the same German sentence.

a total of 188 triples. Sentences ranged in length from 5 tokens to 28 tokens, with a mean of

11.47 tokens (median 11). Due to the short length of the sentences, in many cases there was

only one possible pair of aligned German and English nouns (both of which were single

words rather than noun phrases). In the cases where there were multiple, the translator chose

one that had not yet been chosen, and attempted to ensure a wide range of clear cognates to

non-cognates, as well as a range of how clear the context made the word.

As an outside resource for training language models and other resources, we chose to use

Simple English Wikipedia (Wikimedia Foundation, 2016). It contains 767,826 sentences,

covers a similar set of topics to the NachrichtenLeicht.de data, and uses simple

sentence structure. The sentence lengths are also comparable, with a mean of 17.6 tokens

and a median of 16 tokens. This makes it well-matched for our task.

Our main goal is to examine students’ ability to understand novel L2 words. To better

separate the effects of context and cognate status and general familiarity with the nouns, we

assess subjects on the three tasks illustrated in Table 3.1:

1. word: Subjects are presented with a single German word out of context, and are asked
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to provide their best guess for the translation.

2. cloze: A single noun is deleted from a sentence and subjects are asked to fill in the

blank.

3. combined: Subjects are asked to provide their best-guess translation for a single

German noun in the context of an English sentence. This is identical to the cloze task,

except that the German noun replaces the blank.

We used Amazon Mechanical Turk (henceforth MTurk), a crowdsourcing platform, to

recruit subjects and collect their responses to our tasks. Tasks on MTurk are referred to as

HITs (Human Intelligence Tasks). In order to qualify for our tasks, subjects completed short

surveys on their language skills. They were asked to rate their language proficiency in four

languages (English, Spanish, German, and French) on a scale from “None” to “Fluent.” The

intermediate options were “Up to 1 year of study (or equivalent)” and “More than 1 year of

study (or equivalent)”.3 Only subjects who indicated that they were fluent in English but

indicated “None” for German experience were permitted to complete the tasks.

Additional stratification of users into groups is described in the subsection below. The

HITs were presented to subjects in a somewhat randomized order (as per MTurk standard

setup).

Data Collection Protocol: In this setup, each subject may be asked to complete in-

stances of all three tasks. However, the subject is shown at most one task instance that was
3Subjects were instructed to list themselves as having experience equivalent to language instruction even if

they had not studied in a classroom if they had been exposed to the language by living in a place that it was
spoken, playing online language-learning games, or other such experiences.
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derived from a given data triple (for example, at most one line from Table 3.1).4 Subjects

were paid between $0.05 and $0.08 per HIT, where a HIT consists of 5 instances of the

same task. Each HIT was completed by 9 unique subjects. Subjects voluntarily completed

from 5 to 90 task instances (1–18 hits), with a median of 25 instances (5 HITs). HITs took

subjects a median of 80.5 seconds according to the MTurk output timing. Each triple gives

rise to one cloze, one word, and one combined task. For each of those tasks, 9 users make

guesses, for a total of 27 guesses per triple. Data was preprocessed to lowercase all guesses

and to correct obvious typos.5 Users made 1863 unique guesses (types across all tasks). Of

these, 142 were determined to be errors of some sort; 79 were correctable spelling errors, 54

were multiple-word phrases rather than single words, 8 were German words, and 1 was an

ambiguous spelling error. In our experiments, we treat all of the uncorrectable errors as out

of vocabulary tokens, for which we cannot compute features (such as edit distance, etc.).

Data Splits: After collecting data on all triples from our subjects, we split the dataset

for purposes of predictive modeling. We randomly partitioned the triples into a training set

(112 triples), a development set (38 triples), and a test set (38 triples). Note that the same

partition by triples was used across all tasks. As a result, a German noun/English noun pair

that appears in test data is genuinely unseen—it did not appear in the training data for any

task.
4Each triple gives rise to an instance of each task. Subjects who completed one of these instances were

prevented from completing the other two by being assigned an additional MTurk “qualification”—in this case,
a disqualification.

5All guesses that were flagged by spell-check were manually checked to see if they constituted typos (e.g.,
“langauges” for “languages”) or spelling errors (e.g., “speach” for “speech”) with clear corrections.
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3.1.2 Modeling Subject Guesses

In an educational technology context, such as a tool for learning vocabulary, we would like

a way to compute the difficulty of examples automatically, in order to present learners with

examples with appropriate level of difficulty. For such an application, it would be useful

to know not only whether the learner is likely to correctly guess the vocabulary item, but

also whether their incorrect guesses are “close enough” to allow the user to understand the

sentence and proceed with reading. We seek to build models that can predict a subject’s

likely guesses and their probabilities, given the context with which they have been presented.

We use a small set of features (described below) to characterize subjects’ guesses and

build predictive models of what a subject is likely to guess. Feature functions can jointly

examine the input presented to the subject and candidate guesses.

We evaluate the models both in terms of how well they predict subject guesses, as

well as how well they perform on the simpler subtask of modeling guessability. We define

guessability for a word in context to be how easy that word is for a subject to guess, given

the context. In practice, we estimated guessability as the proportion of subjects that exactly

guessed the word (i.e., the reference English translation).

3.1.2.1 Features Used

When our formula for computing a feature draws on parameters that are estimated from

corpora, we used the Simple English Wikipedia data and GloVe vectors (Pennington, Socher,
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and Manning, 2014). Our features are functions whose arguments are the candidate guess

and the triple (of German noun, English noun, and English sentence). They are divided into

three categories based on which portions of the triple they consider:

Generic Features: These features are independent of subject input, and could be useful

regardless of whether the subject made their guess in the word, cloze, or combined task.

1. Candidate==Correct Answer This feature fires when the candidate is equal

to the correct answer.

2. Candidate==OOV This is used when the candidate guess is not a valid English

word (for example, multiple words or an incomprehensible typo), in which case no

other features about the candidate are extracted.

3. Length We compute the number of characters in the correct answer.

4. Embedding Cosine distance between embedding of candidate and embedding of

correct answer. For the embeddings, we use the 300-dimensional GloVe vectors from

the 6B-token dataset.

5. Log Unigram Frequency of candidate in the Simple English Wikipedia corpus.

6. Levenshtein Distance between candidate and correct answer.

7. Sound Edit Distance Levenshtein Distance between phonetic representations

of candidate and correct answer, as given by Metaphone (Philips, 1990).6

6When several variations were available for a particular feature, such as which phonetic representation to
use or whether or not to normalize, the version we selected for our studies (and described here) is the version
that correlated most strongly with guessability on training data.
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8. LCS Length of longest common substring between candidate and correct answer,

normalized.

9. Normalized Trigram Overlap count of character trigrams (types) that match

between the candidate and correct answer, normalized by the maximum possible

matches.

Word Features: These features are dependent on the German word, and should thus

only be useful in the word and combined tasks. The second half of the generic features (from

Levenshtein Distance through Normalized Trigram Overlap) are also computed between

the candidate and the German word and are used as measures of cognateness. The use of

Metaphone (which is intended to predict the pronunciation of English words) is appropriate

to use for German words in this case, as it corresponds to the assumption that our learners

do not yet have accurate representations of German pronunciation and may be applying

English pronunciation rules to German. Cloze Features: These features are dependent on

the surrounding English context, and should thus only be useful in the cloze and combined

tasks.

1. LM Score of candidate in context, using a 5-gram language model built using

KenLM (Heafield et al., 2013) and a neural RNNLM (Mikolov et al., 2011).7 We

compute three different features for each language model, a raw LM score, a sentence-

length-normalized LM score, and the difference between the LM score with the correct

answer in the sentence and the LM score with the candidate in its place.
7We use the Faster-RNNLM toolkit available at https://github.com/yandex/faster-rnnlm.
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2. PMI Maximum pointwise mutual information between any word in the context and

the candidate.

3. Left Bigram Collocations These are bigram association measures between

the candidate’s neighbor(s) to the left and the candidate (Church and Hanks, 1990).

We include a version that just examines the neighbor directly to the left (which we’d

expect to do well in collocations like “San Francisco”) as well as a version that returns

the maximum score over a window of five, which behaves like an asymmetric version

of PMI.

4. Embeddings Minimum cosine distance between embeddings of any word in the

context and the candidate.

Intuitively, we expect it to be easiest to guess the correct word in the combined task,

followed by the cloze task, followed by the L2 word with no context.8 As shown in Figure

3.1, this is borne out in our data.

In Table 3.2 we show Spearman correlations between several features and the guessability

of the word (given a word, cloze, or combined context). The first two features (log unigram

probability and length of the correct solution) in Table 3.2 belong to the generic category

of features. We expect that learners may have an easier time guessing short or common

words (for instance, it may be easier to guess “cat” than “trilobite”) and we do observe such

correlations.
8All plots/values in the remainder of this subsection are computed only over the training data unless

otherwise noted.
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Feature Spearman’s Correlation w/ Guessability

Word Cloze Combined All

Log Unigram Frequency 0.310* 0.262* 0.279* 0.255*

English Length -0.397* -0.392* -0.357* -0.344*

Sound Edit Distance (German + Answer) -0.633* n/a -0.575* -0.409*

Levenshtein Distance (German + Answer) -0.606* n/a -0.560* -0.395*

Max PMI (Answer + Context) n/a 0.480* 0.376* 0.306*

Max Left Bigram Collocations (Answer + Window=5) n/a 0.474* 0.186 0.238*

Max Right Bigram Collocations (Answer + Window=5) n/a 0.119 0.064 0.038

Table 3.2: Correlations between selected feature values and answer guessability, computed

on training data (starred correlations significant at p < 0.01. Unavailable features are

represented by “n/a” (for example, since the German word is not observed in the cloze task,

its edit distance to the correct solution is unavailable). Due to the format of our triples, it

is still possible to test whether these unavailable features influence the subject’s guess: in

almost all cases they indeed do not appear to, since the correlation with guessability is low

(absolute value < 0.15) and not statistically significant even at the p < 0.05 level.
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Word Cloze Combined
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Figure 3.1: Average guessability by context type, computed on 112 triples (from the training

data). Error bars show 95%-confidence intervals for the mean, under bootstrap resampling

of the 112 triples (we use BCa intervals). Mean accuracy increases significantly from each

task to the next (same test on difference of means, p < 0.01).

In the middle of the table, we can see how, despite the word task being most difficult

on average, there are cases such as Gitarrist (guitarist), where cognateness allows all or

nearly all learners to guess the meaning of the word with no context. The correlation

between guessability and Sound Edit Distance as well Levenshtein Distance demonstrate

their usefulness as proxies for cognateness. The other word features described earlier also

show strong correlation with guessability in the word and combined tasks.

Similarly, in some cloze tasks, strong collocations or context clues, as in the case of “His

plane landed at the ,” make it easy to guess the correct solution (airport). Arguably,

even the number of blank words to fill are a clue to complete this sentence, but we do not

model this in our study. We would expect, for instance, a high PMI between “plane” and

“airport”, and we see this reflected in the correlation between high PMI and guessability.
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The final two lines of the table examine an interesting quirk of bigram association measures.

We see that Left Bigram Collocations with a window of 5 (that is, where the feature returns

the maximum collocation score between a word in the window to the left of the word to be

guessed) shows reasonable correlation with guessability. Right bigram collocations, on the

other hand, do not appear to correlate. This suggests that the subjects focus more on the

words preceding the blank when formulating their guess (which makes sense as they read

left-to-right). Due to its poor performance, we do not include Right Bigram Collocations in

our later experiments.

We expect that learners who see only the word will make guesses that lean heavily on

cognateness (for example, incorrectly guessing “Austria” for “Ausland”), while learners who

see the cloze task will choose words that make sense semantically (eg. incorrectly guessing

“tornado” in the sentence “The destroyed many houses and uprooted many trees”).

Guesses for the combined task may fall somewhere between these two, as the learner takes

advantage of both sources of information. Here we focus on incorrect guesses (to control

for the differences in task difficulty).

For example, in Figure 3.2, we see that guesses (made by our human subjects) in the

word task have higher average Normalized Character Trigram Overlap than guesses in the

cloze task, with the combined task in between.

This pattern of the combined task falling between the word and cloze task is consistent

across most features examined.
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Word Cloze Combined
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Figure 3.2: Average Normalized Character Trigram Overlap between guesses and the

German word.

3.1.3 Model

The correlations in the previous subsection support our intuitions about how to model

subject behavior in terms of cognateness and context. Of course, we expect that rather than

basing their guesses on a single feature, subjects are performing cue combination, balancing

multiple cognate and context clues (whenever they are available). Following that to its

natural conclusion, we choose a model that also allows for cue combination in order to

model subject guesses.

We use log-linear models to model subject guesses as probability distributions over the

vocabulary V , as seen in Equations 3.1 and 3.2.

p(y|x) = exp(w · f(x, y))∑︁
y′∈V exp(w · f(x, y′)) (3.1)

w · f(x, y) =
∑︂
k

wkfk(x, y) (3.2)
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We use a 5000-word vocabulary, containing all complete English vocabulary from the

triples and user guesses, padded with frequent words from the Simple English Wikipedia

dataset.

Given the context x that the subject was shown (word, cloze, or combined), p(y|x)

represents the probability that a subject would guess the vocabulary item y ∈ V . The model

learns weights wk for each feature fk(x, y). We train the model using MegaM (Daumé III,

2004) via the NLTK interface.

An example feature function is shown in Equation 3.3.

fk(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if Correct Answer == y

0, otherwise

(3.3)

In order to best leverage the cloze features (shared across the cloze and combined tasks),

the word features (shared across the word and combined task) and the generic features

(shared across all tasks), we take the domain adaptation approach used in (Daumé III, 2007).

In this approach, instead of a single feature for Levenshtein distance between a German

word and a candidate guess, we instead have three copies of this feature, one that fires only

when the subject is presented with the word task, one that fires when the subject is presented

with the combined task, and one which fires in either of those situations (note that since

a subject who sees the cloze task does not see the German word, we omit such a version

of the feature). This allows us to learn different weights for different versions of the same

features. For example, this allows the model to learn high weight for cognateness features
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in the word and combined settings, without being influenced to learn a low weight on it by

the cloze setting.

3.1.3.1 Evaluating the Models

We evaluate the models in several ways: using conditional cross-entropy, by computing

mean reciprocal rank, and computing correlation with guessability.

The empirical distribution for a given context x is calculated from all count(·|x) learner

guesses for that context, with p(g|x) = count(g|x)
count(·|x) (where count(g|x) is the number of

learners who guessed g in the context x).

The conditional cross-entropy is defined to be the mean negative log probability over all

test task instances (pairs of subject guesses g and contexts x), 1
N

∑︁N
i=0− log2 p(gi | xi).

The mean reciprocal rank is computed after ranking all vocabulary words (in each

context) by the probability assigned to them by the model, calculating the reciprocal rank of

the each subject guess gi, and then averaging this across all contexts x in the set X of all

contexts, as shown in Equation 3.4.

MRR =
1

N

N∑︂
i=1

1

rank(gi|xi)
(3.4)

In order to compute correlation with guessability, we use Spearman’s rho to check the

correlation between guessability and the probability assigned by the model to the correct

answer.
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3.1.4 Results and Analysis
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Figure 3.3: Correlation between empirically observed probability of the correct answer (i.e.

the proportion of human subject guesses that were correct) and model probability assigned

to the correct answer across all tasks in the test set. Spearman’s correlation of 0.725.

In Table 3.3 we show model results over several feature sets. None of the feature sets

(generic features, word features, or cloze features) can perform well individually on the full

test set, which contains word, cloze, and combined tasks. Once combined, they perform

better on all metrics.

Additionally, using domain adaptation improves performance. Manually examining the

best model’s most informative features, we see, for example, that edit distance features

are ranked highly in their word-only or word-combined versions, while the combined-only

version of those features is less informative. This reflects our earlier observation that edit

distance features are highly correlated with guessability in the word task, and slightly less so
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Features Cross-Entropy MRR Correlation

LCS (Candidate + Answer) 10.72 0.067 0.346*

All Generic Features 8.643 0.309 0.168

Sound Edit Distance (Candidate + German Word) 10.847 0.081 0.494*

All Word Features 10.018 0.187 0.570*

LM Difference 11.214 0.051 0.398*

All Cloze Features 10.008 0.105 0.351*

Generic + Word 7.651 0.369 0.585*

Generic + Cloze 8.075 0.320 0.264*

Word + Cloze 8.369 0.227 0.706*

All Features (No Domain Adapt.) 7.344 0.338 0.702*

All Features + Domain Adapt. 7.134 0.382 0.725*

Table 3.3: Feature ablation. The single highest-correlating feature (on dev set) from each

feature group is shown, followed by the entire feature group. All versions with more than

one feature include a feature for the OOV guess. In the correlation column, p-values < 0.01

are marked with an asterisk.
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Context Observed Guess Truth Hypothesized Explanation

Helfer cow helpers False Friend: Helfer→Heifer→Cow

Journalisten reporter journalists Synonym and incorrect number.

The Lage is too dangerous. lake location Influenced by spelling and context.

Table 3.4: Examples of incorrect guesses and potential sources of confusion.

(though still relevant) in the combined task. We show in Figure 3.3 that the model probability

assigned to the correct guess correlates strongly with the probability of learners correctly

guessing it.

Annotated Guesses: To take a fine-grained look at guesses, we broke down subject

guesses into several categories.

Figure 3.4: Percent of examples labeled with each label by a majority of annotators (may

sum to more than 100%, as multiple labels were allowed).

We had 4 annotators (fluent English speakers, but non-experts) label 50 incorrect subject
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guesses from each task, sampled randomly from the spell-corrected incorrect guesses

in the training data, with the following labels indicating why the annotator thought the

subject made the (incorrect) guess they did, given the context that the subject saw: false

friend/cognate/spelling bias (learner appears to have been influenced by the spelling of the

German word), synonym (learner guess is a synonym or near-synonym to the correct answer),

incorrect number/POS (correct noun with incorrect number or incorrect POS), and context

influence (a word that makes sense in the cloze/combo context but is not correct). Examples

of the range of ways in which errors can manifest are shown in Table 3.4. Annotators made

a binary judgment for each of these labels. Inter-annotator agreement was substantial, with

Fleiss’s kappa of 0.654. Guesses were given a label only if the majority of annotators agreed.

In Figure 3.4, we can make several observations about subject behavior. First, the labels

for the combined and cloze tasks tend to be more similar to one another, and quite different

from the word task labels. In particular, in the majority of cases, subjects completing cloze

and combo tasks choose words that fit the context they’ve observed, while spelling influence

in the word task doesn’t appear to be quite as strong. Even if the subjects in the cloze and

combined tasks make errors, they choose words that still make sense in context more than

50% of the time, while spelling doesn’t exert an equally strong influence in the word task.

Our model also makes predictions that look plausibly like those made by the human

subjects. For example, given the context “In , the AKP now has the most

representatives.” the model ranks the correct answer (“parliament”) first, followed by

“undersecretary,” “elections,” and “congress,” all of which are thematically appropriate, and
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most of which fit contextually into the sentence. For the German word “Spieler”, the top

ranking predictions made by the model are “spider,” “smaller,” and “spill,” while one of the

actual user guesses (“speaker”) is ranked as 10th most likely (out of a vocabulary of 5000

items).

3.2 Macaronic Setting

In §3.1 we restricted the sentences to only contain a single noun token in the foreign language,

while the rest of the tokens were in L1. In this section we model incidental comprehension

for the “full macaronic” setting, where multiple tokens can be in the foreign language, and

the word ordering may also be in the foreign language word-order. The stimuli of interest are

now like “Der Polizist arrested the Bankräuber.” (“The police arrested

the bank robber”). Even in this scenario, with multiple tokens have been replaced with their

L2 equivalent, a reader with no knowledge of German is likely to be able to understand

this sentence reasonably well by using cognate and context clues. These clues provide

enough scaffolding for the reader to infer the meaning of novel words and hopefully infer

the meaning of the entire sentence. In these stimuli the novel foreign words jointly influence

each other along with other words that are in the students native language. Of course, there

are several possible configurations for this sentence where a reader might not be able to

understand this sentence. Our goal is to model configurations that are understandable while

exposing the reader to as much novel L2 vocabulary and sentence structure as possible.
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Our experimental subjects are required to guess what “Polizist” and “Bankräuber”

mean in this sentence. We train a featurized model to predict these guesses jointly within

each sentence and thereby predict incidental comprehension on any macaronic sentence.

Indeed, we hope our model design will generalize from predicting incidental comprehension

on macaronic sentences (for our beginner subjects, who need some context words to be

in English) to predicting incidental comprehension on full German sentences (for more

advanced students, who understand some of the context words as if they were in English). In

addition, we developed a user interface that uses macaronic sentences directly as a medium

of language instruction. Chapter 4 details the user interface.

3.2.1 Data Collection Setup

Our method of scaffolding is to replace certain foreign words and phrases with their English

translations, yielding a macaronic sentence.9 Simply presenting these to a learner would

not give us feedback on the learner’s belief state for each foreign word. Even assessing the

learner’s reading comprehension would give only weak indirect information about what

was understood. Thus, we collect data where a learner explicitly guesses a foreign word’s

translation when seen in the macaronic context. These guesses are then treated as supervised

labels to train our user model.

We used Amazon Mechanical Turk (MTurk) to collect data. Users qualified for tasks

by completing a short quiz and survey about their language knowledge. Only users whose

9Although the language distinction is indicated by italics and color, users were left to figure this out on
their own.
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results indicated no knowledge of German and self-identified as native speakers of English

were allowed to complete tasks. With German as the foreign language, we generated

content by crawling a simplified-German news website, nachrichtenleicht.de. We

chose simplified German in order to minimize translation errors and to make the task more

suitable for novice learners. We translated each German sentence using the Moses Statistical

Machine Translation (SMT) toolkit (Koehn et al., 2007). The SMT system was trained on

the German-English Commoncrawl parallel text used in WMT 2015 (Bojar et al., 2015).

We used 200 German sentences, presenting each to 10 different users. In MTurk jargon,

this yielded 2000 Human Intelligence Tasks (HITs). Each HIT required its user to participate

in several rounds of guessing as the English translation was incrementally revealed. A user

was paid US $0.12 per HIT, with a bonus of US $6 to any user who accumulated more than

2000 total points.

3.2.1.1 HITs and Submissions

For each HIT, the user first sees a German sentence10 (Figure 3.5). A text box is presented

below each German word in the sentence, for the user to type in their “best guess” of

what each German word means. The user must fill in at least half of the text boxes before

submitting this set of guesses. The resulting submission—i.e., the macaronic sentence

together with the set of guesses—is logged in a database as a single training example, and

10Except that we first “translate” any German words that have identical spelling in English (case-insensitive).
This includes most proper names, numerals, and punctuation marks. Such translated words are displayed in
English style (blue italics), and the user is not asked to guess their meanings.
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Figure 3.5: After a user submits a set of guesses (top), the interface marks the correct

guesses in green and also reveals a set of translation clues (bottom). The user now has the

opportunity to guess again for the remaining German words.

the system displays feedback to the user about which guesses were correct.

After each submission, new clues are revealed (providing increased scaffolding) and the

user is asked to guess again. The process continues, yielding multiple submissions, until

all German words in the sentence have been translated. At this point, the entire HIT is

considered completed and the user moves to a new HIT (i.e., a new sentence).

From our 2000 HITs, we obtained 9392 submissions (4.7 per HIT) from 79 distinct

MTurk users.

3.2.1.2 Clues

Each update provides new clues to help the user make further guesses. There are 2 kinds of

clues:

Translation Clue (Figure 3.5): A set of words that were originally in German are replaced

with their English translations. The text boxes below these words disappear, since it is no

longer necessary to guess them.
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Figure 3.6: In this case, after the user submits a set of guesses (top), two clues are revealed

(bottom): ausgestellt is moved into English order and then translated.

Reordering Clue (Figure 3.6): A German substring is moved into a more English-like

position. The reordering positions are calculated using the word and phrase alignments

obtained from Moses.

Each time the user submits a set of guesses, we reveal a sequence of n = max(1, round(N/3))

clues, where N is the number of German words remaining in the sentence. For each clue,

we sample a token that is currently in German. If the token is part of a movable phrase, we

move that phrase; otherwise we translate the minimal phrase containing that token. These

moves correspond exactly to clues that a user could request by clicking on the token in the

macaronic reading interface, see Chapter 4 for details of how moves are constructed and

animated. In our present experiments, the system is in control instead, and grants clues by

“randomly clicking” on n tokens.

The system’s probability of sampling a given token is proportional to its unigram type

probability in the WMT corpus. Thus, rarer words tend to remain in German for longer,

allowing the Turker to attempt more guesses for these “difficult” words. However, close

cognates would be an exeption to this rule, as they are not frequent but probably easy to
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guess by Turkers.

3.2.1.3 Feedback

When a user submits a set of guesses, the system responds with feedback. Each guess is

visibly “marked” in left-to-right order, momentarily shaded with green (for correct), yellow

(for close) or red (for incorrect). Depending on whether a guess is correct, close, or wrong,

users are awarded points as discussed below. Yellow and red shading then fades, to signal to

the user that they may try entering a new guess. Correct guesses remain on the screen for

the entire task.

3.2.1.4 Points

Adding points to the process (Figures 3.5–3.6) adds a game-like quality and lets us incen-

tivize users by paying them for good performance. We award 10 points for each exactly

correct guess (case-insensitive). We give additional “effort points” for a guess that is close

to the correct translation, as measured by cosine similarity in vector space. (We used pre-

trained GLoVe word vectors (Pennington, Socher, and Manning, 2014); when the guess or

correct translation has multiple words, we take the average of the word vectors.) We deduct

effort points for guesses that are careless or very poor. Our rubric for effort points is as

follows:
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ep =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, if ê is repeated or nonsense (red)

−1, if sim(ê, e∗) < 0 (red)

0, if 0 ≤ sim(ê, e∗) < 0.4 (red)

0, if ê is blank

10× sim(ê, e∗) otherwise (yellow)

Here sim(ê, e∗) is cosine similarity between the vector embeddings of the user’s guess ê and

our reference translation e∗. A “nonsense” guess contains a word that does not appear in the

sentence bitext nor in the 20,000 most frequent word types in the GLoVe training corpus.

A “repeated” guess is an incorrect guess that appears more than once in the set of guesses

being submitted.

In some cases, ê or e∗ may itself consist of multiple words. In this case, our points

and feedback are based on the best match between any word of ê and any word of e∗. In

alignments where multiple German words translate as a single phrase,11 we take the phrasal

translation to be the correct answer e∗ for each of the German words.

3.2.1.5 Normalization

After collecting the data, we normalized the user guesses for further analysis. All guesses

were lowercased. Multi-word guesses were crudely replaced by the longest word in the

11Our German-English alignments are constructed as in Renduchintala et al. (2016a)
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guess (breaking ties in favor of the earliest word).

The guesses included many spelling errors as well as some nonsense strings and direct

copies of the input. We defined the dictionary to be the 100,000 most frequent word types

(lowercased) from the WMT English data. If a user’s guess ê does not match e∗ and is not

in the dictionary, we replace it with:

• the special symbol <COPY>, if ê appears to be a copy of the German source word f

(meaning that its Levenshtein distance from f is < 0.2 ·max(|ê|, |f |));

• else, the closest word in the dictionary12 as measured by Levenshtein distance (break-

ing ties alphabetically), provided the dictionary has a word at distance ≤ 2;

• else <BLANK>, as if the user had not guessed.

3.2.2 User Model

In each submission, the user jointly guesses several English words, given spelling and

context clues. One way that a machine could perform this task is via probabilistic inference

in a factor graph—and we take this as our model of how the human user solves the problem.

The user observes a German sentence f = [f1, f2, . . . , fi, . . . fn]. The translation of each

word token fi isEi, which is from the user’s point of view a random variable. Let Obs denote

the set of indices i for which the user also observes that Ei = e∗i , the aligned reference

translation, because e∗i has already been guessed correctly (green feedback) or shown as a

12Considering only words returned by the Pyenchant ‘suggest’ function
(http://pythonhosted.org/pyenchant/).
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clue. Thus, the user’s posterior distribution over E is Pθ(E = e | EObs = e∗Obs, f , history),

where “history” denotes the user’s history of past interactions.

We assume that a user’s submission ê is derived from this posterior distribution simply

as a random sample. We try to fit the parameter vector θ to maximize the log-probability

of the submission. Note that our model is trained on the user guesses ê, not the reference

translations e∗. That is, we seek parameters θ that would explain why all users made their

guesses.

Although we fit a single θ, this does not mean that we treat users as interchangeable

(since θ can include user-specific parameters) or unvarying (since our model conditions

users’ behavior on their history, which can capture some learning).

3.2.3 Factor Graph

We model the posterior distribution as a conditional random field (Figure 3.7) in which the

value of Ei depends on the form of fi as well as on the meanings ej (which may be either

observed or jointly guessed) of the context words at j ̸= i:

Pθ(E = e | EObs = e∗Obs, f , history) (3.5)

∝
∏︂
i/∈Obs

(ψef(ei, fi) ·
∏︂
j ̸=i

ψee(ei, ej, i− j))

We will define the factors ψ (the potential functions) in such a way that they do not

“know German” but only have access to information that is available to an naive English

speaker. In brief, the factor ψef(ei, fi) considers whether the hypothesized English word ei
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f1 . . . fi . . . fn

E1
. . . Ei

. . . En

ψee(e1, ei) ψee(ei, en)

ψee(e1, en)

ψef(e1, f1)ψ
ef(ei, fi) ψef(en, fn)

Figure 3.7: Model for user understanding of L2 words in sentential context. This figure

shows an inference problem in which all the observed words in the sentence are in German

(that is, Obs = ∅). As the user observes translations via clues or correctly-marked guesses,

some of the Ei become shaded.

“looks like” the observed German word fi, and whether the user has previously observed

during data collection that ei is a correct or incorrect translation of fi. Meanwhile, the factor

ψee(ei, ej) considers whether ei is commonly seen in the context of ej in English text. For

example, the user will elevate the probability that Ei = cake if they are fairly certain that

Ej is a related word like eat or chocolate.

The potential functions ψ are parameterized by θ, a vector of feature weights. For

convenience, we define the features in such a way that we expect their weights to be positive.

We rely on just 6 features at present (see Section 3.2.7 for future work), although each

is complex and real-valued. Thus, the weights θ control the relative influence of these 6

different types of information on a user’s guess. Our features broadly fall under the following

categories: Cognate, History, and Context. We precomputed cognate and context features,
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while history features are computed on-the-fly for each training instance. All features are

case-insensitive.

3.2.3.1 Cognate Features

For each German token fi, the ψef factor can score each possible guess ei of its translation:

ψef(ei, fi) = exp(θef · ϕef(ei, fi)) (3.6)

The feature function ϕef returns a vector of 4 real numbers:

• Orthographic Similarity: The normalized Levenshtein distance between the 2 strings.

ϕef
orth(ei, fi) = 1− lev(ei, fi)

max(|ei|, |fi|)
(3.7)

The weight on this feature encodes how much users pay attention to spelling.

• Pronunciation Similarity: This feature is similar to the previous one, except that it

calculates the normalized distance between the pronunciations of the two words:

ϕef
pron(ei, fi) = ϕef

orth(prn(ei), prn(fi)) (3.8)

where the function prn(x) maps a string x to its pronunciation. We obtained pro-

nunciations for all words in the English and German vocabularies using the CMU

pronunciation dictionary tool (Weide, 1998). Note that we use English pronunciation

rules even for German words. This is because we are modeling a naive learner who

may, in the absence of intuition about German pronunciation rules, apply English

pronunciation rules to German.
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3.2.3.2 History Features

• Positive History Feature: If a user has been rewarded in a previous HIT for guessing

ei as a translation of fi, then they should be more likely to guess it again. We define

ϕef
hist+(ei, fi) to be 1 in this case and 0 otherwise. The weight on this feature encodes

whether users learn from positive feedback.

• Negative History Feature: If a user has already incorrectly guessed ei as a translation

of fi in a previous submission during this HIT, then they should be less likely to guess

it again. We define ϕef
hist-(ei, fi) to be −1 in this case and 0 otherwise. The weight on

this feature encodes whether users remember negative feedback.13

3.2.3.3 Context Features

In the same way, the ψef factor can score the compatibility of a guess ei with a context word

ej , which may itself be a guess, or may be observed:

ψee
ij (ei, ej) = exp(θee · ϕee(ei, ej, i− j)) (3.9)

13At least in short-term memory—this feature currently omits to consider any negative feedback from
previous HITs.
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ϕee returns a vector of 2 real numbers:

ϕee
pmi(ei, ej) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PMI(ei, ej) if |i− j| > 1

0 otherwise

(3.10)

ϕee
pmi1(ei, ej) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
PMI1(ei, ej) if |i− j| = 1

0 otherwise

(3.11)

where the pointwise mutual information PMI(x, y) measures the degree to which the English

words x, y tend to occur in the same English sentence, and PMI1(x, y) measures how often

they tend to occur in adjacent positions. These measurements are estimated from the English

side of the WMT corpus, with smoothing performed as in Knowles et al. (2016).

For example, if fi = Suppe, the user’s guess of Ei should be influenced by fj = Brot

appearing in the same sentence, if the user suspects or observes that its translation is

Ej = bread. The PMI feature knows that soup and bread tend to appear in the same

English sentences, whereas PMI1 knows that they tend not to appear in the bigram soup

bread or bread soup.

3.2.3.4 User-Specific Features

Apart from the basic 6-feature model, we also trained a version that includes user-specific

copies of each feature (similar to the domain adaptation technique of Daumé III (2007)).

For example, ϕef
orth,32(ei, fi) is defined to equal ϕef

orth(ei, fi) for submissions by user 32, and

defined to be 0 for submissions by other users.
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Thus, with 79 users in our dataset, we learned 6 × 80 feature weights: a local weight

vector for each user and a global vector of “backoff” weights. The global weight θef
orth

is large if users in general reward orthographic similarity, while θef
orth,32 (which may be

positive or negative) captures the degree to which user 32 rewards it more or less than is

typical. The user-specific features are intended to capture individual differences in incidental

comprehension.

3.2.4 Inference

According to our model, the probability that the user guesses Ei = êi is given by a marginal

probability from the CRF. Computing these marginals is a combinatorial optimization

problem that involves reasoning jointly about the possible values of each Ei (i /∈ Obs),

which range over the English vocabulary V e.

We employ loopy belief propagation (Murphy, Weiss, and Jordan, 1999) to obtain

approximate marginals over the variables E. A tree-based schedule for message passing

was used (Dreyer and Eisner, 2009). We run 3 iterations with a new random root for each

iteration.14

We define the vocabulary V e to consist of all reference translations e∗i and normalized

user guesses êi from our entire dataset (see Section 3.2.1.5), about 5K types altogether

including <BLANK> and <COPY>. We define the cognate features to treat <BLANK> as

the empty string and to treat <COPY> as fi. We define the PMI of these special symbols

14Remark: In the non-loopy case (which arises for us in cases with ≤ 2 unobserved variables), this schedule
boils down to the forward-backward algorithm. In this case, a single iteration is sufficient for exact inference.
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with any e to be the mean PMI with e of all dictionary words, so that they are essentially

uninformative.

3.2.5 Parameter Estimation

We learn our parameter vector θ to approximately maximize the regularized log-likelihood

of the users’ guesses:

(︂∑︂
logPθ(E = ê | EObs = e∗Obs, f , history)

)︂
− λ||θ||2 (3.12)

where the summation is over all submissions in our dataset. The gradient of each summand

reduces to a difference between observed and expected values of the feature vector ϕ =

(ϕef,ϕee), summed over all factors in (3.5). The observed features are computed directly

by setting E = ê. The expected features (which arise from the log of the normalization

constant of (3.5)) are computed approximately by loopy belief propagation.

We trained θ using stochastic gradient descent (SGD),15 with a learning rate of 0.1 and

regularization parameter of 0.2. The regularization parameter was tuned on our development

set.

3.2.6 Experimental Results

We divided our data randomly into 5550 training instances, 1903 development instances,

and 1939 test instances. Each instance was a single submission from one user, consisting of
15To speed up training, SGD was parallelized using Recht et al.’s (2011) Hogwild! algorithm. We trained

for 8 epochs.
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a batch of “simultaneous” guesses on a macaronic sentence.

We noted qualitatively that when a large number of English words have been revealed,

particularly content words, the users tend to make better guesses. Conversely, when most

context is German, we unsuprisingly see the user leave many guesses blank and make other

guesses based on string similarity triggers. Such submissions are difficult to predict as

different users will come up with a wide variety of guesses; our model therefore resorts to

predicting similar-sounding words. For detailed examples of this see Appendix 3.2.6.3.

For each foreign word fi in a submission with i /∈ Obs, our inference method (sec-

tion 3.2.4) predicts a marginal probability distribution over a user’s guesses êi. Table 3.5

shows our ability to predict user guesses.16 Recall that this task is essentially a structured

prediction task that does joint 4919-way classification of each German word. Roughly 1/3

of the time, our model’s top 25 words include the user’s exact guess.

However, the recall reported in Table 3.5 is too stringent for our educational application.

We could give the model partial credit for predicting a synonym of the learner’s guess ê.

More precisely, we would like to give the model partial credit for predicting when the learner

will make a poor guess of the truth e∗—even if the model does not predict the user’s specific

incorrect guess ê.

To get at this question, we use English word embeddings (as in Section 3.2.1.4) as a

proxy for the semantics and morphology of the words. We measure the actual quality of the

16Throughout this section, we ignore the 5.2% of tokens on which the user did not guess (i.e., the guess
was <BLANK> after the normalization of Section 3.2.1.5). Our present model simply treats <BLANK> as an
ordinary and very bland word (section 3.2.4), rather than truly attempting to predict when the user will not
guess. Indeed, the model’s posterior probability of <BLANK> in these cases is a paltry 0.0000267 on average
(versus 0.0000106 when the user does guess). See Section 3.2.7.
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Model
Recall at k

(dev)

Recall at k

(test)

1 25 50 1 25 50

Basic 15.24 34.26 38.08 16.14 35.56 40.30

User-Adapted 15.33 34.40 38.67 16.45 35.71 40.57

Table 3.5: Percentage of foreign words for which the user’s actual guess appears in our top-k

list of predictions, for models with and without user-specific features (k ∈ {1, 25, 50}).

learner’s guess ê as its cosine similarity to the truth, sim(ê, e∗). While quality of 1 is an exact

match, and quality scores > 0.75 are consistently good matches, we found quality of ≈ 0.6

also reasonable. Pairs such as (mosque, islamic) and (politics, government) are

examples from the collected data with quality ≈ 0.6. As quality becomes < 0.4, however,

the relationship becomes tenuous, e.g., (refugee, soil).

Similarly, we measure the predicted quality as sim(e, e∗), where e is the model’s 1-best

prediction of the user’s guess. Figure 3.8 plots predicted vs. actual quality (each point

represents one of the learner’s guesses on development data), obtaining a correlation of

0.38, which we call the “quality correlation” or QC. A clear diagonal band can be seen,

corresponding to the instances where the model exactly predicts the user’s guess. The cloud

around the diagonal is formed by instances where the model’s prediction was not identical

to the user’s guess but had similar quality.

We also consider the expected predicted quality, averaging over the model’s predictions
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Figure 3.8: Actual quality sim(ê, e∗) of the learner’s guess ê on development data, versus

predicted quality sim(e, e∗) where e is the basic model’s 1-best prediction.

e of ê (for all e ∈ V e) in proportion to the probabilities that it assigns them. This allows

the model to more smoothly assess whether the learner is likely to make a high-quality

guess. Figure 3.9 shows this version, where the points tend to shift upward and the quality

correlation (QC) rises to 0.53.

All QC values are given in Table 3.6. We used expected QC on the development set as

the criterion for selecting the regularization coefficient λ and as the early stopping criterion

during training.

3.2.6.1 Feature Ablation

To test the usefulness of different features, we trained our model with various feature

categories disabled. To speed up experimentation, we sampled 1000 instances from the

training set and trained our model on those. The resulting QC values on dev data are shown
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Figure 3.9: Actual quality sim(ê, e∗) of the learner’s guess ê on development data, versus

the expectation of the predicted quality sim(e, e∗) where e is distributed according to the

basic model’s posterior.

in Table 3.7. We see that removing history-based features has the most significant impact

on model performance: both QC measures drop relative to the full model. For cognate and

context features, we see no significant impact on the expected QC, but a significant drop in

the 1-best QC, especially for context features.

3.2.6.2 Analysis of User Adaptation

Table 3.6 shows that the user-specific features significantly improve the 1-best QC of our

model, although the much smaller improvement in expected QC is insignificant.

User adaptation allows us to discern different styles of incidental comprehension. A user-

adapted model makes fine-grained predictions that could help to construct better macaronic

sentences for a given user. Each user who completed at least 10 HITs has their user-specific
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Model
Dev Test

Exp 1-Best Exp 1-Best

Basic 0.525 0.379 0.543 0.411

User-Adapted 0.527 0.427 0.544 0.439

Table 3.6: Quality correlations: basic and user-adapted models.

weight vector shown as a row in Figure 3.10. Recall that the user-specific weights are not

used in isolation, but are added to backoff weights shared by all users.

These user-specific weight vectors cluster into four groups. Furthermore, the average

points per HIT differ by cluster (significantly between each cluster pair), reflecting the

success of different strategies.17 Users in group (a) employ a generalist strategy for incidental

comprehension. They pay typical or greater-than-typical attention to all features of the

current HIT, but many of them have diminished memory for vocabulary learned during past

HITs (the hist+ feature). Users in group (b) seem to use the opposite strategy, deriving

their success from retaining common vocabulary across HITs (hist+) and falling back on

orthography for new words. Group (c) users, who earned the most points per HIT, appear to

make heavy use of context and pronunciation features together with hist+. We also see that

pronunciation similarity seems to be a stronger feature for group (c) users, in contrast to the

more superficial orthographic similarity. Group (d), which earned the fewest points per HIT,

17Recall that in our data collection process, we award points for each HIT (section 3.2.1.4). While the
points were designed more as a reward than as an evaluation of learner success, a higher score does reflect
more guesses that were correct or close, while a lower score indicates that some words were never guessed
before the system revealed them as clues.
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Feature Removed
QC

Expected 1-Best

None 0.522 0.425

Cognate 0.516 0.366∗

Context 0.510 0.366∗

History 0.499∗ 0.259∗

Table 3.7: Impact on quality correlation (QC) of removing features from the model. Ablated

QC values marked with asterisk∗ differ significantly from the full-model QC values in the

first row (p < 0.05, using the test of Preacher (2002)).

appears to be an “extreme” version of group (b): these users pay unusually little attention to

any model features other than orthographic similarity and hist+. (More precisely, the model

finds group (d)’s guesses harder to predict on the basis of the available features, and so gives

a more uniform distribution over V e.)

3.2.6.3 Example of Learner Guesses vs. Model Predictions

To give a sense of the problem difficulty, we have hand-picked and presented two train-

ing examples (submissions) along with the predictions of our basic model and their log-

probabilities. In Figure 3.11a a large portion of the sentence has been revealed to the user in

English (blue text) only 2 words are in German. The text in bold font is the user’s guess.

Our model expected both words to be guessed; the predictions are listed below the German
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Figure 3.10: The user-specific weight vectors, clustered into groups. Average points per

HIT for the HITs completed by each group: (a) 45, (b) 48, (c) 50 and (d) 42.

words Verschiedene and Regierungen. The reference translation for the 2 words

are Various and governments. In Figure 3.11b we see a much harder context where

only one word is shown in English and this word is not particularly helpful as a contextual

anchor.

3.2.7 Future Improvements to the Model

Our model’s feature set (section 3.2.3) could clearly be refined and extended. Indeed, in

the previous section, we use a more tightly controlled experimental design to explore some

simple feature variants. A cheap way to vet features would be to test whether they help on

the task of modeling reference translations, which are more plentiful and less noisy than the

user guesses.
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For Cognate features, there exist many other good string similarity metrics (including

trainable ones). We could also include ϕef features that consider whether ei’s part of speech,

frequency, and length are plausible given fi’s burstiness, observed frequency, and length.

(E.g., only short common words are plausibly translated as determiners.)

For Context features, we could design versions that are more sensitive to the position

and status of the context word j. We speculate that the actual influence of ej on a user’s

guess ei is stronger when ej is observed rather than itself guessed;when there are fewer

intervening tokens (and particularly fewer observed ones);and when j < i. Orthogonally,

ϕef(ei, ej) could go beyond PMI and windowed PMI to also consider cosine similarity, as

well as variants of these metrics that are thresholded or nonlinearly transformed. Finally,

we do not have to treat the context positions j as independent multiplicative influences as

in equation (3.5) (cf. Naive Bayes): we could instead use a topic model or some form of

language model to determine a conditional probability distribution over Ei given all other

words in the context.

An obvious gap in our current feature set is that we have no ϕe features to capture

that some words ei ∈ V e are more likely guesses a priori. By defining several versions

of this feature, based on frequencies in corpora of different reading levels, we could learn

user-specific weights modeling which users are unlikely to think of an obscure word.We

should also include features that fire specifically on the reference translation e∗i and the

special symbols <BLANK> and <COPY>, as each is much more likely than the other features

would suggest.
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For History features, we could consider negative feedback from other HITs (not just the

current HIT), as well as positive information provided by revealed clues (not just confirmed

guesses).We could also devise non-binary versions in which more recent or more frequent

feedback on a word has a stronger effect.More ambitiously, we could model generalization:

after being shown that Kind means child, a learner might increase the probability that

the similar word Kinder means child or something related (children, childish,

. . . ), whether because of superficial orthographic similarity or a deeper understanding of

the morphology. Similarly, a learner might gradually acquire a model of typical spelling

changes in English-German cognate pairs.

A more significant extension would be to model a user’s learning process. Instead of

representing each user by a small vector of user-specific weights, we could recognize that

the user’s guessing strategy and knowledge can change over time.

A serious deficiency in our current model is that we treat <BLANK> like any other word.

A more attractive approach would be to learn a stochastic link from the posterior distribution

to the user’s guess or non-guess, instead of assuming that the user simply samples the

guess from the posterior. As a simple example, we might say the user guesses e ∈ V e with

probability p(e)β—where p(e) is the posterior probability and β > 1 is a learned parameter—

with the remaining probability assigned to <BLANK>. This says that the user tends to avoid

guessing except when there are relatively high-posterior-probability words to guess.

Finally, newer representation learning models such as BERT (Devlin et al., 2019) and

XLNet (Yang et al., 2019) could also be used in our model. XLNet in particular, with its
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ability to account for interdependencies between output tokens, would be a good candidate

to provide rich contextual features to either replace or used along with the weaker pair-wise

PMI based features of our current model.

3.2.8 Conclusion

We have presented a methodology for collecting data and training a model to estimate a

foreign language learner’s understanding of L2 vocabulary in partially understood contexts.

Both are novel contributions to the study of L2 acquisition.

Our current model is arguably crude, with only 6 features, yet it can already often do a

reasonable job of predicting what a user might guess and whether the user’s guess will be

roughly correct. This opens the door to a number of future directions with applications to

language acquisition using personalized content and learners’ knowledge.

We leave as future work the integration of this model into an adaptive system that tracks

learner understanding and creates scaffolded content that falls in their zone of proximal

development, keeping them engaged while stretching their understanding.
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(a)

(b)

Figure 3.11: Two examples of the system’s predictions of what the user will guess on a

single submission, contrasted with the user’s actual guess. (The user’s previous submissions

on the same task instance are not shown.) In 3.11a, the model correctly expects that the

substantial context will inform the user’s guess. In 3.11b, the model predicts that the user

will fall back on string similarity—although we can see that the user’s actual guess of and

day was likely informed by their guess of night, an influence that our CRF did consider.

The numbers shown are log-probabilities. Both examples show the sentences in a macaronic

state (after some reordering or translation has occurred). For example, the original text

of the German sentence in 3.11b reads Deshalb durften die Paare nur noch

ein Kind bekommen . The macaronic version has undergone some reordering, and

has also erroneously dropped the verb due to an incorrect alignment.
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Chapter 4

Creating Interactive Macaronic

Interfaces for Language Learning

In the previous chapter, we presented models for incidental learning. We hope to generate

macaronic text by consulting such models. Recall that the AI teacher’s goal is to generate

comprehensible macaronic texts for a student to read. Given a macaronic data structure

associated with a piece of text, the AI teacher must render a macaronic configuration that it

believes the student will understand (and learn from). But what if the AI teacher makes a

sentence that is too difficult for the student to read? Or too easy with very little L2 words?

For such cases, we would like to give “control” back to the student and let them interactively

modify the macaronic sentence. Suppose the sentence is too difficult, we would like the

student to not get completely stuck, so we would like to give them the chance to ask for

hints. On the flip-side, if a student feels there is not enough L2 content in a macaronic
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sentence, we want interact with the data structure and explore macaronic spectrum.

To provide these features to the student, we design a user-interface in which such

modifications are possible. We present the details of our user-interface along with interaction

modalities in this chapter.

We provide details of the current user interface and discuss how content for our system

can be automatically generated using existing statistical machine translation (SMT) methods,

enabling learners or teachers to choose their own texts to read. Our interface lets the user

navigate through the spectrum from L2 to L1, going beyond the single-word or single-phrase

translations offered by other online tools such as Swych (2015), or dictionary-like browser

plugins.

Finally, we note that the interaction design could include logging all of the actions

a student makes while reading a text. We can then use the logged actions to refine our

incidental learning model to hopefully produce macaronic text that is more personalized to

the student’s L2 level. We leave this for future work.

4.1 Macaronic Interface

To illustrate the workings of our interface, we assume a native English speaker (L1=English)

who is learning German (L2=German). However, our existing interface can accommodate

any pair of languages whose writing systems share directionality.1 The primary goal of

the interface is to empower a learner to translate and reorder parts of a confusing foreign

1We also assume that the text is segmented into words.
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language sentence. These translations and reorderings serve to make the German sentence

more English-like. The interface also permits reverse transformations, letting the curious

learner “peek ahead” at how specific English words and constructions would surface in

German.

Using these fundamental interactions as building blocks, we create an interactive frame-

work for a language learner to explore this continuum of “English-like” to “foreign-like”

sentences. By repeated interaction with new content and exposure to recurring vocabulary

items and linguistic patterns, we believe a learner can pick up vocabulary and other linguistic

rules of the foreign language.

4.1.1 Translation

The basic interface idea is that a line of macaronic text is equipped with hidden interlinear

annotations. Notionally, English translations lurk below the macaronic text, and German

ones above.

The Translation interaction allows the learner to change the text in the macaronic

sentence from one language to another. Consider a macaronic sentence that is completely

in the foreign state (i.e.,, entirely in German), as shown in Fig. 4.1a. Hovering on or under

a German word shows a preview of a translation (Fig. 4.1b). Clicking on the preview will

cause the translation to “rise up” and replace the German word (Fig. 4.1c).

To translate in the reverse direction, the user can hover and click above an English word

(Fig. 4.1d).
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Since the same mechanism applies to all the words in the sentence, a learner can

manipulate translations for each word independently. For example, Fig. 4.1e shows two

words in English.

(a) Initial sentence state.

(b) Mouse hovered under Preis.

(c) Preis translated to prize.

(d) Mouse hovered above prize. Clicking above will revert the

sentence back to the initial state 4.1a.

(e) Sentence with 2 different words translated into English

Figure 4.1: Actions that translate words.

The version of our prototype displayed in Figure 4.1 blurs the preview tokens when a

learner is hovering above or below a word. This blurred preview acts as a visual indication

of a potential change to the sentence state (if clicked) but it also gives the learner a chance

77



CHAPTER 4. CREATING MACARONIC INTERFACES

to think about what the translation might be, based on visual clues such as length and shape

of the blurred text.

4.1.2 Reordering

When the learner hovers slightly below the words nach Georg Büchner a Reordering

arrow is displayed (as shown in Figure 4.2). The arrow is an indicator of reordering. In

this example, the German past participle benannt appears at the end of the sentence (the

conjugated form of the verb is ist benannt, or is named); this is the grammatically

correct location for the participle in German, while the English form should appear earlier

in the equivalent English sentence.

Similar to the translation actions, reordering actions also have a directional attribute.

Figure 4.2b shows a German-to-English direction arrow. When the learner clicks the arrow,

the interface rearranges all the words involved in the reordering. The new word positions

are shown in 4.2c. Once again, the user can undo: hovering just above nach Georg

Büchner now shows a gray arrow, which if clicked returns the phrase to its German word

order (shown in 4.2d).

German phrases that are not in original German order are highlighted as a warning

(Figure 4.2c).
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(a)

(b)

(c)

(d)

Figure 4.2: Actions that reorder phrases.

4.1.3 “Pop Quiz” Feature

So far, we have described the system’s standard responses to a learner’s actions. We now add

occasional “pop quizzes.” When a learner hovers below a German word (s0 in Figure 4.3)

and clicks the blurry English text, the system can either reveal the translation of the German

word (state s2) as described in section 4.1.1 or quiz the learner (state s3). We implement the

quiz by presenting a text input box to the learner: here the learner is expected to type what

they believe the German word means. Once a guess is typed, the system indicates if the
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s0

s1 s3

s4

s5

s2s6

b
c

c

e

e

a

c

Figure 4.3: State diagram of learner interaction (edges) and system’s response(vertices).

Edges can be traversed by clicking (c), hovering above (a), hovering below (b) or the enter

(e) key. Unmarked edges indicate an automatic transition.

guess is correct (s4) or incorrect(s5) by flashing green or red highlights in the text box. The

box then disappears (after 700ms) and the system automatically proceeds to the reveal state

s2. As this imposes a high cognitive load and increases the interaction complexity (typing

vs. clicking), we intend to use the pop quiz infrequently.

The pop quiz serves two vital functions. First, it further incentivizes the user to retain

learned vocabulary. Second, it allows the system to update its model of the user’s current L2

lexicon, macaronic comprehension, and learning style; this is work in progress (see section

4.3.2).
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4.1.4 Interaction Consistency

Again, we regard the macaronic sentence as a kind of interlinear text, written between two

mostly invisible sentences: German above and English below. In general, hovering above

the macaronic sentence will reveal German words or word orders, which fall down into the

macaronic sentence upon clicking. Hovering below will reveal English translations, which

rise up upon clicking.

The words in the macaronic sentence are colored according to their language. We want

the user to become accustomed to reading German, so the German words are in plain black

text by default, while the English words use a marked color and font (italic blue). Reordering

arrows also follow the same color scheme: arrows that will make the macaronic sentence

more “German-like” are gray, while arrows that make the sentence more “English-like” are

blue. The summary of interactions is shown in Table 4.1.

Action Direction Trigger Preview Preview Color Confirm Result

Translation
E-to-G Hover above English

Blurry German

translation above
Gray Blur

Click on

Blurry Text

translation replaces

English word(s)

G-to-E
Hover under German

token

Blurry English

translation below
Blue Blur

Click on

Blurry Text

translation replaces

German word(s)

Reordering
E-to-G Hover above token

Arrow above

reordering tokens
Gray Arrow Click on Arrow tokens reorder

G-to-E Hover under token
Arrow below

reordering tokens
Blue Arrow Click on Arrow tokens reorder

Table 4.1: Summary of learner triggered interactions in the Macaronic Interface.
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4.2 Constructing Macaronic Translations

In this section, we describe the details of the underlying data structures needed to allow all

the interactions mentioned in the previous section. A key requirement in the design of the

data structure was to support orthogonal actions in each sentence. Making all translation

and reordering actions independent of one another creates a large space of macaronic states

for a learner to explore.

At present, the input to our macaronic interface is bitext with word-to-word alignments

provided by a phrase-based SMT system (or, if desired, by hand). We employ Moses

(Koehn et al., 2007) to translate German sentences and generate phrase alignments. News

articles written in simple German from nachrichtenleicht.de (Deutschlandfunk,

2016) were translated after training the SMT system on the WMT15 German-English corpus

(Bojar et al., 2015).

We convert the word alignments into “minimal alignments” that are either one-to-one,

one-to-many or many-to-one. For each many-to-many alignment returned by the SMT

system, we remove alignment edges (lowest probability first) until the alignment is no longer

many-to-many. Then we greedily add edges from unaligned tokens (highest probability first),

subject to not creating many-to-many alignments and subject to minimizing the number

of crossing edges, until all tokens are aligned. This step ensures consistent reversibility of

actions and prevents large phrases from being translated with a single click.2 The resulting

2Preliminary experiments showed that allowing large phrases to translate with one click resulted in abrupt
jumps in the visualization, which users found hard to follow.
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bipartite graph can be regarded as a collection of connected components, or units (Fig. 4.4).3

Figure 4.4: The dotted lines show word-to-word alignments between the German sentence

f0, f1, . . . , f7 and its English translation e0, e1, . . . , e6. The figure highlights 3 of the 7 units:

u2, u3, u4.

4.2.1 Translation Mechanism

In a given state of the macaronic sentence, each unit is displayed in either English or German.

A translation action toggles the display language of the unit, leaving it in place. For example,

in Figure 4.5, where the macaronic sentence is currently displaying f4f5 = noch einen,

a translation action will replace this with e4 = a.

3In the sections below, we gloss over cases where a unit is discontiguous (in one language). Such units are
handled specially (we omit details for reasons of space). If a unit would fall outside the bounds of what our
special handling can handle, we fuse it with another unit.
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Figure 4.5: A possible state of the sentence, which renders a subset of the tokens (shown in

black). The rendering order (section 4.2.2) is not shown but is also part of the state. The string

displayed in this case is ”Und danach they run noch einen Marathon.” (as-

suming no reordering).

4.2.2 Reordering Mechanism

A reordering action changes the unit order of the current macaronic sentence. The output

string “Und danach they run noch einen Marathon.” is obtained from Fig-

ure 4.5 only if unit u2 (as labeled in Figure 4.4) is rendered (in its current language) to

the left of unit u3, which we write as u2 < u3. In this case, it is possible for the user to

change the order of these units, because u3 < u2 in German. Table 4.2 shows the 8 possible

combinations of ordering and translation choices for this pair of units.
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String Rendered Unit Ordering

. . .they run. . .

{u2} < {u3}
. . .they laufen. . .

. . .sie run. . .

. . .sie laufen. . .

. . .run they. . .

{u2} > {u3}
. . .run sie. . .

. . .laufen they. . .

. . .laufen sie. . .

Table 4.2: Generating reordered strings using units.

The space of possible orderings for a sentence pair is defined by a bracketing ITG tree

(Wu, 1997), which transforms the German ordering of the units into the English ordering by

a collection of nested binary swaps of subsequences.4 The ordering state of the macaronic

sentence is given by the subset of these swaps that have been performed. A reordering action

toggles one of the swaps in this collection.

Since we have a parser for German (Rafferty and Manning, 2008), we take care to

select an ITG tree that is “compatible” with the German sentence’s dependency structure,

in the following sense: if the ITG tree combines two spans A and B, then there are not

dependencies from words in A to words in B and vice-versa.

4Occasionally no such ITG tree exists, in which case we fuse units as needed until one does.
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(a) (b)

(c) (d)

Figure 4.6: Figure 4.6a shows a simple discontiguous unit. Figure 4.6b shows a long distance

discontiguity which is supported. In figure 4.6c the interruptions align to both sides of e3

which is not supported. In situations like 4.6c, all associated units are merged as one phrasal

unit (shaded) as shown in figure 4.6d

4.2.3 Special Handling of Discontiguous Units

We provide limited support for alignments which form discontiguous units. Figure 4.6a

shows a simple discontiguous unit. In this example, a reordering action (G-to-E direction)

performed on either f2 or f4 will move f2 to the immediate left of f4 eliminating the

interrupting alignment. After reordering, the translation action becomes available to the

learner, just as in a multi-word contiguous unit. The system currently supports one or

more interrupting units as long as these units are contiguous and are from only one side of

the single token (see Figure 4.6a and 4.6b). If the conditions for special handling are not
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satisfied (see Figure 4.6c), the system forces all the tokens to a single unit, which results in a

phrasal alignment and is treated as a single unit (Figure 4.2d). Such units have no reordering

actions and result in a phrasal translation. We also employ this “back off” phrasal alignment

in cases where alignments do not satisfy the ITG constraint.

4.3 Discussion

4.3.1 Machine Translation Challenges

When the English version of the sentence is produced by an MT system, it may suffer from

MT errors and/or poor alignments.

Even with correct MT, a given syntactic construction may be handled inconsistently on

different occasions, depending on the particular words involved (as these affect what phrasal

alignment is found and how we convert it to a minimal alignment). Syntax-based MT could

be used to design a more consistent interface that is also more closely tied to classroom L2

lessons.

Cross-linguistic divergences in the expression of information (Dorr, 1994) could be

confusing. For example, when moving through macaronic space from Kaffee gefällt

Menschen (coffee pleases humans) to its translation humans like coffee, it may

not be clear to the learner that the reordering is triggered by the fact that like is not a literal

translation of gefällt. One way to improve this might be to have the system pass smoothly
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through a range of intermediate translations from word-by-word glosses to idiomatic

phrasal translations, rather than always directly translating idioms. Concretely, we can

first transform Kaffee gefällt Menschen into Kaffee gefällt humans and

then into Kaffee pleases humans and finally into coffee pleases humans.

These transitions could be done via manual rules. Once all tokens of the German phrase are

in English the final transition would render the phrase in “correct” English humans like

coffee. We might also see benefit in guiding our gradual translations with cognates (for

example, rather than translate directly from the German Möhre to the English carrot, we

might offer the cognate Karotte as an intermediate step).

Another avenue of research is to transition through words that are macaronic at the sub-

word level. For example, hovering over the unfamiliar German word gesprochen might

decompose it into ge-sprochen; then clicking on one of those morphemes might yield

ge-talk or sprech-ed before reaching talked. This could guide learners towards an

understanding of German tense marking and stem changes. Generation of these sub-word

macaronic forms could be done using multilingual trained morphological reinflectionn

systems such as Kann, Cotterell, and Schütze (2017).

4.3.2 User Adaptation and Evaluation

We would prefer to show the learner a macaronic sentence that provides just enough clues

for the learner to be able to comprehend it, while still pushing them to figure out new

vocabulary or new structures. Thus, we plan to situate this interface in a framework that
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continuously adapts as the user progresses. As the user learns new vocabulary, the system

will automatically present them with more challenging sentences (containing less L1). In ??

we show that we can predict a novice learner’s guesses of L2 word meanings in macaronic

sentences using a few simple features. We will subsequently track the user’s learning by

observing their mouse actions and “pop quiz” responses (section 4.1).

While we have had users interact with our system in order to collect data about novice

learners’ guesses, we are working toward an evaluation where our system is used to supple-

ment classroom instruction for real foreign-language students.

4.4 Conclusion

In this work we present a prototype of an interactive interface for learning to read in a

foreign language. We expose the learner to L2 vocabulary and constructions in contexts

that are comprehensible because they have been partially translated into the learner’s native

language, using statistical MT. Using MT affords flexibility: learners or instructors can

choose which texts to read, and learners or the system can control which parts of a sentence

are translated.

In the long term, we would like to extend the approach to allow users also to produce

macaronic language, drawing on techniques from grammatical error correction or computer-

aided translation to help them gradually remove L1 features from their writing (or speech)

and make it more L2-like. We leave this for future work.
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Chapter 5

Construction of Macaronic Texts for

Vocabulary Learning

5.1 Introduction

In the previous chapters, we presented a interactive interface to read macaronic sentences

and a model that predicts a student’s guessing abilities which used information from the

L1 and L2 context as well as cognate information as input features. To train this model we

require supervised data, meaning data on student behaviors and capabilities (Renduchintala

et al., 2016b; Labutov and Lipson, 2014). The data collection for supervised data involves

prompting students (in our experiments we used MTurk users) with macaronic sentences

created randomly (or with some heuristic) and then asking the MTurk “students” to guess

the meanings of L2 words in these sentences. The random macaronic sentences paired
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with student guesses forms the training data. This step is expensive, not only from a data

collection point of view, but also from the point of view of students, as they would have to

give feedback (i.e. generate labeled data) on the actions of an initially untrained machine

teacher.

In this chapter, we show that it is possible to design a machine teacher without any

supervised data from (human) students. We use a neural cloze language model instead of

the weaker conditional random field used earlier. We also propose a method to allow our

cloze language model to incrementally learn new vocabulary items, and use this language

model as a proxy for the word guessing and learning ability of real students. A machine

foreign-language teacher decides which subset of words to replace by consulting this cloze

language model. The cloze language model is initially trained on a corpus of L1 texts and

is therefore not personalized to a (human) student. Despite this, we show that a machine

foreign-language can generate pedagogically useful macaronic texts after consulting with

the cloze language model. We are essentially using a cloze language model as a “drop-in”

replacement for a true user model we refer to the cloze language as a generic student model.

We evaluate three variants of our generic student language models through a study on

Amazon Mechanical Turk (MTurk). We find that MTurk “students” were able to guess the

meanings of L2 words (in context) introduced by the machine teacher with high accuracy for

both function words as well as content words in two out of the three models. Furthermore,

we select the best performing variant and evaluate if participants can actually learn the L2

words by letting participants read a macaronic passage and give an L2 vocabulary quiz at
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Sentence The Nile is a river in Africa

Gloss Der Nil ist ein Fluss in Afrika

Macaronic Der Nile ist a river in Africa

Configurations The Nile is a Fluss in Africa

Der Nil ist ein river in Africa

Table 5.1: An example English (L1) sentence with German (L2) glosses. Using the glosses,

many possible macaronic configurations are possible. Note that the gloss sequence is not a

fluent L2 sentence.

the end of passage, where the L2 words are presented without their sentential context.

5.1.1 Limitation

While we gain the ability to construct macaronic texts for students without any prior data

collection, we limit ourselves to lexical replacements only. This limitation arises because

of our proposed method to evaluate the knowledge of the generic student model compares

lexical word embeddings and is therefore unable to measure other linguistic knowledge such

as word order. This is a key limitation of the work proposed in this chapter.
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5.2 Method

Our machine teacher can be viewed as a search algorithm that tries to find the (approxi-

mately) best macaronic configuration for the next sentence in a given L1 document. We

assume the availability of a “gold” L2 gloss for each L1 word: in our experiments, we

obtained these from bilingual speakers using Mechanical Turk. Table 5.1 shows an example

English sentence with German glosses and three possible macaronic configurations (there

are exponentially many configurations). The machine teacher must assess, for example,

how accurately a student would understand the meanings of Der, ist, ein, and Fluss

when presented with the following candidate macaronic configuration: Der Nile ist

ein Fluss in Africa.1 Understanding may arise from inference on this sentence

as well as whatever the student has learned about these words from previous sentences.

The teacher makes this assessment by presenting this sentence to a generic student model

(§§5.2.1–5.5). It uses a L2 embedding scoring scheme (§5.5.1) to guide a greedy search for

the best macaronic configuration (§5.5.2).

5.2.1 Generic Student Model

Our model of a “generic student” (GSM) is equipped with a cloze language model that

uses a bidirectional LSTM to predict L1 words in L1 context (Mousa and Schuller, 2017;

1By “meaning” we mean the L1 token that was originally in the sentence before it was replaced by an L2
gloss.
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Hochreiter and Schmidhuber, 1997). Given a sentence x = [x1, . . . , xt, . . . , xT ], the cloze

model defines p(xt | hf
t,h

b
t) ∀t ∈ {1, . . . , T}, where:

hf
t = LSTMf ([x1, . . . ,xt−1];θ

f ) ∈ RD (5.1)

hb
t = LSTMb([xT , . . . ,xt+1];θ

b) ∈ RD (5.2)

are hidden states of forward and backward LSTM encoders parameterized by θf and θb

respectively. The model assumes a fixed L1 vocabulary of size V , and the vectors xt above

are embeddings of these word types, which correspond to the rows of an embedding matrix

E ∈ RV×D. The cloze distribution at each position t in the sentence is obtained using

p(· | hf ,hb) = softmax(E h([hf ;hb]; θh)) (5.3)

where h(·;θh) is a projection function that reduces the dimension of the concatenated hidden

states from 2D to D. We “tie” the input embeddings and output embeddings as in Press and

Wolf (2017).

We train the parameters θ = [θf ;θb;θh;E] using Adam (Kingma and Ba, 2014) to

maximize
∑︁

x L(x), where the summation is over sentences x in a large L1 training corpus,

and

L(x) =
∑︂
t

log p(xt | hf
t,h

b
t) (5.4)

We set the dimensionality of word embeddings and LSTM hidden units to 300. We use

the WikiText-103 corpus (Merity et al., 2016) as the L1 training corpus. We apply dropout

(p = 0.2) between the word embeddings and LSTM layers, and between the LSTM and
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projection layers (Srivastava et al., 2014). We assume that the resulting model represents

the entirety of the student’s L1 knowledge.

5.2.2 Incremental L2 Vocabulary Learning

The model so far can assign probability to an L1 sentence such as The Nile is a

river in Africa, using equation (5.4), but what about a macaronic sentence such as

Der Nile ist ein Fluss in Africa? To accommodate the new L2 words, we

use another word-embedding matrix, F ∈ RV ′×D and modify Eq 5.3 to consider both the L1

and L2 embeddings:

p(· | [hf : hb]) = softmax([E;F] · h([hf : hb];θh))

We also restrict the softmax function above to produce a distribution not over the full

bilingual vocabulary of size |V |+ |V ′|, but only over the bilingual vocabulary consisting

of the V L1 types together with only the v′ ⊂ V ′ L2 types that actually appear in the

macaronic sentence x. In the above example macaronic sentence, |v′| is 4. We initialize F

by drawing its elements IID from Uniform[−0.01, 0.01]. Thus, all L2 words initially have

random embeddings [−0.01, 0.01]1×D.

These modifications lets us compute L(x) for a macaronic sentence x. We assume that

when a human student reads a macaronic sentence x, they update their L2 parameters F (but

not their L1 parameters θ) to increase L(x). Specifically, we assume that F will be updated
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to maximize

L(x;θf ,θb,θh,E,F)− λ∥F − Fprev∥2 (5.5)

Maximizing equation (5.5) adjusts the embeddings of each L2 word in the sentence so that

it is more easily predicted from the other L1/L2 words, and also so that it is more helpful at

predicting the other L1/L2 words. Since the rest of the model’s parameters do not change,

we expect to find an embedding for Fluss that is similar to the embedding for river.

However, the regularization term with coefficient λ > 0 prevents F from straying too far

from from Fprev, which represents the value of F before this sentence was read. This limits

the degree to which our simulated student will change their embedding of an L2 word such

as Fluss based on a single example. As a result, the embedding of Fluss reflects all of

the past sentences that contained Fluss, although (realistically) with some bias toward the

most recent such sentences. We do not currently model spacing effects, i.e., forgetting due

to the passage of time.

In principle, λ should be set based on human-subjects experiments, and might differ

from human to human. In practice, in this paper, we simply took λ = 1. We (approxi-

mately) maximized the objective above using 5 steps of gradient ascent, which gave good

convergence in practice.
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5.2.3 Scoring L2 embeddings

The incremental vocabulary learning procedure (§5.2.2) takes a macaronic configuration

and generates a new L2 word-embedding matrix by applying gradient updates to a previous

version of the L2 word-embedding matrix. The new matrix represents the proxy student’s

L2 knowledge after observing the macaronic configuration.

Thus, if we can score the new L2 embeddings, we can, in essence, score the macaronic

configuration that generated it. The ability to score configurations affords search (§§ 5.2.4

and 5.2.5) for high-scoring configurations. With this motivation, we design a scoring

function to measure the “goodness” of L2 word-embeddings, F.

The machine teacher evaluates F with reference to all correct word-gloss pairs from

the entire document. For our example sentence, the word pairs are {(The, Der), (is,ist),

(a,ein), (river,Fluss)}. But the machine teacher also has access to, for example,

{(water,Wasser), (stream, Fluss) . . .}, which come from elsewhere in the document.

Thus, if P is the set of word pairs,{(x1, f1), ...(x|P|, f|P|)}, we compute:

r̃p =R(xp, cs(Ffp ,E)) (5.6)

rp =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r̃p if r̃p < rmax

∞ otherwise

MRR(F,E, rmax) =
1

|P|
∑︂
p

1

rp
(5.7)

where cs(Ff ,E) denotes the vector of cosine similarities between the embedding of an L2
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word f and the entire L1 vocabulary. R(x, cs(E,Ff )) queries the rank of the correct L1

word x that pairs with f . r can take values from 1 to |V |, but we use a rank threshold rmax

and force pairs with a rank worse than rmax to∞. Thus, given a word-gloss pairing P , the

current state of the L2 embedding matrix F, and the L1 embedding matrix E, we obtain the

Mean Reciprocal Rank (MRR) score in (5.21).

We can think of the scoring function as a “vocabulary test” in which the proxy student

gives (its best) rmax guesses for each L2 word type and receives a numerical grade.

5.2.4 Macaronic Configuration Search

So far we have detailed our simulated student that would learn from a macaronic sentence,

and a metric to measure how good the learned L2 embeddings would be. Now the machine

teacher only has to search for the best macaronic configuration of a sentence. As there

are exponentially many possible configurations to consider, exhaustive search is infeasible.

We use a simple left-to-right greedy search to approximately find the highest scoring

configuration for a given sentence. Algorithm 1 shows the pseudo-code for the search

process. The inputs to the search algorithm are the initial L2 word-embeddings matrix

Fprev, the scoring function MRR(), and the generic student model SPM(). The algorithm

proceeds left to right, making a binary decision at each token: Should the token be replaced

with its L2 gloss or left as is? For the first token, these two decisions result in the two

configurations: (i) Der Nile... and (ii) The Nile... These configurations are given

to the generic student model which updates the L2 word embeddings. The scoring function
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(section 5.5.1) computes a score for each L2 word-embedding matrix and caches the best

configuration (i.e. the configuration associated with the highest scoring L2 word-embedding

matrix). If two configurations result in the same MRR score, the number of L2 word types

exposed is used to break ties. In Algorithm 1, ρ(c) is the function that counts the number of

L2 word types exposed in a configuration c.

5.2.5 Macaronic-Language document creation

Our idea is that a sequence of macaronic configurations is good if it drives the generic

student model’s L2 embeddings toward an MRR score close to 1 (maximum possible). Note

that we do not change the sentence order (we still want a coherent document), just the

macaronic configuration of each sentence. For each sentence in turn, we greedily search

over macaronic configurations using Algorithm 1, then choose the configuration that learns

the best F, and proceed to the next sentence with Fprev now set to this learned F.2 This

process is repeated until the end of the document. The pseudo-code for generating an entire

document of macaronic content is shown in Algorithm 2.

In summary, our machine teacher is composed of (i) a generic student model which is

a contextual L2 word learning model (§5.2.1 and §5.2.2) and (ii) a configuration sequence

search algorithm (§5.2.4 and §5.2.5), which is guided by (iii) an L2 vocabulary scoring

function (§5.5.1). In the next section, we describe two variations for the generic student

models.
2For the first sentence, we initialize Fprev to have values randomly between [−0.01, 0.01].
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Algorithm 1 Mixed-Lang. Config. Search
Require: x = [x1, x2, . . . , xT ] ▷ L1 tokens

Require: g = [g1, g2, . . . , gT ] ▷ L2 glosses

Require: E ▷ L1 emb. matrix

Require: Fprev ▷ initial L2 emb. matrix

Require: SPM ▷ Student Proxy Model

Require: MRR,rmax ▷ Scoring Func., threshold

1: function SEARCH(x,g,E,Fprev)

2: c← x ▷ initial configuration is the L1 sentence

3: F← Fprev

4: s = MRR(E,F, rmax)

5: for i = 1; i ≤ T ; i++ do

6: c′ ← c1 · · · ci−1 gi xi+1 · · ·xT

7: F′ = SPM(Fprev, c′)

8: s′ = MRR(E,F′, rmax)

9: if (s′,−ρ(c′)) ≥ (s,−ρ(c)) then

10: c← c′,F← F′, s← s′

11: end if

12: end for

13: return c,F ▷ Mixed-Lang. Config.

14: end function
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Algorithm 2 Mixed-Lang. Document Gen.
Require: D = [(x1,g1), . . . , (xN,gN)] ▷ Document

Require: E ▷ L1 emb. matrix

Require: F0 ▷ initial L2 emb. matrix

1: function DOCGEN(D,F0)

2: C = [] ▷ Configuration List

3: for i = 1; i ≤ N ; i++ do

4: xi,gi = Di

5: ci,Fi = SEARCH(xi,gi,E,F
i−1)

6: C ← C + [ci]

7: end for

8: return C ▷ Mixed-Lang. Document

9: end function
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5.3 Variations in Generic Student Models

We developed two variations for the generic student model to compare and contrast the

macaronic documents that can be generated.

5.3.1 Unidirectional Language Model

This variation restricts the bidirectional model (from Section 5.2.1) to be unidirectional

(uGSM) and follows a standard recurrent neural network (RNN) language model (Mikolov

et al., 2010).

log p(x) =
∑︂
t

log p(xt | hf
t) (5.8)

hf
t = LSTMf (x0, . . . ,xt−1;θ

f ) (5.9)

p(· | hf ) = softmax(E · hf ) (5.10)

Once again, hf ∈ RD×1 is the hidden state of the LSTM recurrent network, which is

parameterized by θf , but unlike the model in Section 5.2.1, no backward LSTM and no

projection function is used.

The same procedure from the bidirectional model is used to update L2 word embeddings

(Section 5.2.2). While this model does not explicitly encode context from “future” tokens

(i.e. words to the right of xt) , there is still pressure from right-side tokens xt+t:T because

the new embeddings will be adjusted to explain the tokens to the right as well. Fixing all the

L1 parameters further strengthens this pressure on L2 embeddings from words to their right.
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5.3.2 Direct Prediction Model

The previous two models variants adjust L2 embeddings using gradient steps to improve the

pseudo-likelihood of the presented macaronic sentences. One drawback of such an approach

is computation speed caused by the bottleneck introduced by the softmax operation.

We designed an alternate student prediction model that can “directly” predict the embed-

dings for words in a sentence using contextual information. We refer to this variation as the

Direct Prediction (DP) model. Like our previous generic student models, the DP model also

uses bidirectional LSTMs to encode context and an L1 word embedding matrix E. However,

the DP model does not attempt to produce a distribution over the output vocabulary; instead

it tries to predict a real-valued vector using a feed-forward highway network (Srivastava,

Greff, and Schmidhuber, 2015). The DP model’s objective is to minimize the mean square

error (MSE) between a predicted word embedding and the true embedding. For a time-step

t, the predicted word embedding x̂t, is generated by:

hf
t = LSTMf ([x1, . . . ,xt−1];θ

f ) (5.11)

hb
t = LSTMb([xt+1, . . . ,xT ];θ

b) (5.12)

x̂t = FF([xt : h
f
t : h

b
t];θ

w) (5.13)

L(θf ,θb,θw) =
∑︂
t

(x̂t − xt)
2 (5.14)

where FF (.;θw) denotes a feed forward highway network with parameters θw. Thus,

the DP model training requires that we already have the “true embeddings” for all the
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L1 words in our corpus. We use pretrained L1 word embeddings from FastText as “true

embeddings” (Bojanowski et al., 2017). This leaves the LSTM parameters θf ,θb and

the highway feed-forward network parameters θw to be learned. Equation 5.14 can be

minimized by simply copying the input xt as the prediction (ignoring all context). We use

masked training to prevent the model itself from trivially copying (Devlin et al., 2018). We

randomly “mask” 30% of the input embeddings during training. This masking operation

replaces the original embedding with either (i) 0 vectors, or (ii) vectors of a random word

in vocabulary, or (iii) vectors of a “neighboring” word from the vocabulary. 3 The loss,

however, is always computed with respect to the correct token embedding.

With the L1 parameters of the DP model trained, we turn to L2 learning. Once again the

L2 vocabulary is encoded in F, which is initialized to 0 (i.e. before any sentence is observed).

Consider the configuration: The Nile is a Fluss in Africa. The tokens are

converted into a sequence of embeddings: [x0 = Ex0 , . . . ,xt = Fft , ...,xT = ExT
]. Note

that at time-step t the L2 word-embedding matrix is used (t = 4, ft = Fluss for the

example above). A prediction x̂t is generated by the model using Equations 5.11-5.13. Our

hope is that the prediction is a “refined” version of the embedding for the L2 word. The

refinement arises from considering the context of the L2 word. If Fluss was not seen

before, xt = Fft = 0, forcing the DP model to only use contextual information. We apply a

3We precompute 20 neighboring words (based on cosine-similarity) for each word in the vocabulary using
FastText embeddings before training.
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simple update rule that modifies the L2 embeddings based on the direct predictions:

Fft ← (1− η)Fft + ηx̂t (5.15)

where η controls the interpolation between the old values of a word embedding and the

new values which have been predicted based on the current mixed sentence. If there are

multiple L2 words in a configuration, say at positions i and j (where i < j), we can still

follow Eq 5.11–5.13. However, to allow the predictions x̂i and x̂j to jointly influence each

other, we need to execute multiple prediction iterations.

Concretely, let X = [x0, . . . ,Ffi , . . . ,Ffj , . . . ,xT ] be the sequence of word embeddings

for a macaronic sentence. The DPmodel generates predictions X̂ = [x̂0, . . . , x̂i, . . . , x̂j, . . . , x̂T ].

We only use its predictions at time-steps corresponding to L2 tokens since the L2 words are

those we want to update (Eq 5.16).

X1 = DP(X0)

Where,X0 = [x1, . . . ,Ffi , . . . ,Ffj , . . . ,xT ]

X1 = [x1, . . . , x̂
1
i , . . . , x̂

1
j , . . . ,xT ] (5.16)

Xk = DP(Xk−1) ∀ 0 ≤ k < K − 1 (5.17)

where X1 contains predictions at i and j and the original L1 word-embeddings in other

positions. We then pass X1 as input again to the DP model. This is executed for K iterations

(Eq 5.17). With each iteration, our hope is that the DP model’s predictions x̂i and x̂j

get refined by influencing each other and result in embeddings that are well-suited to the

sentence context. A similar style of imputation has been studied for one dimensional time-
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series data by Zhou and Huang (2018). Finally, after K−1 iterations, we use the predictions

of x̂i and x̂j from XK to update the L2 word-embeddings in F corresponding to the L2

tokens fi and fj . η was set to 0.3 and the number of iterations K = 5.

Ffi ← (1− η)Ffi + ηx̂K
i

Ffj ← (1− η)Ffj + ηx̂K
j (5.18)

Figure 5.1: A screenshot of a macaronic sentence presented on Mechanical Turk.

5.4 Experiments with Synthetic L2

We first investigate the patterns of word replacement produced by the machine teacher

under the influence of the different generic student models and how these replacements

affect the guessability of L2 words. To this end, we used the machine teacher to generate

macaronic documents and asked MTurk participants to guess the foreign words. Figure 5.1

shows an example screenshot of our guessing interface. The words in blue are L2 words
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whose meaning (in English) is guessed by MTurk participants. For our study, we created

a synthetic L2 language by randomly replacing characters from English word types. This

step lets us safely assume that all MTurk participants are “absolute beginners.” We tried

to ensure that the resulting synthetic words are pronounceable by replacing vowels with

vowels, stop-consonants with other stop-consonants, etc. We also inserted or deleted one

character from some of the words to prevent the reader from using the length of the synthetic

word as a clue.

Metric Model rmax = 1 rmax = 4 rmax = 8

GSM 0.25 0.31 0.35

Replaced uGSM 0.20 0.25 0.25

DP 0.19 0.22 0.21

GSM 86.00(±0.87) 74.00(±1.10) 55.13(±2.54)

Guess Accuracy uGSM 84.57(±0.56) 73.89(±1.72) 72.83(±1.58)

DP 88.44(±0.73) 81.07(±1.03) 70.85(±1.49)

Table 5.2: Results from MTurk data. The first section shows the percentage of tokens

that were replaced with L2 glosses under each condition. The Accuracy section shows

the percentage token accuracy of MTurk participants’ guesses along with 95% confidence

interval calculated via bootstrap resampling.

We studied the three generic student models (GSM, uGSM, and DP) while keeping the

rest of the machine teacher’s components fixed (i.e. same scoring function and search
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Open-Class Closed-Class All
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Table 5.3: Results of MTurk results split up by word-class. The y-axis is percentage of

tokens belonging to a word-class. The pink bar (right) shows the percentage of tokens

(of a particular word-class) that were replaced with an L2 gloss. The blue bar (left) and

indicates the percentage of tokens (of a particular word-class) that were guessed correctly by

MTurk participants. Error bars represent 95% confidence intervals computed with bootstrap

resampling. For example, we see that only 5.0% (pink) of open-class tokens were replaced

into L2 by the DP model at rmax = 1 and 4.3% of all open-class tokens were guessed

correctly. Thus, even though the guess accuracy for DP at rmax = 1 for open-class is high

(86%) we can see that participants were not exposed to many open-class word tokens.
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algorithms). All three models were constructed to have roughly the same number of L1

parameters (≈ 20M ). The uGSM model used 2 unidirectional LSTM layers instead of a

single bidirectional layer. The L1 and L2 word embedding size and the number of recurrent

units D were set to 300 for all three models (to match the size of FastText’s pretrained

embeddings). We trained the three models on the Wikipedia-103 corpus (Merity et al.,

2016).4 All models were trained for 8 epochs using the Adam optimizer (Kingma and Ba,

2014). We limit the L1 vocabulary to the 60k most frequent English types.

5.4.1 MTurk Setup

We selected 6 documents from Simple Wikipedia to serve as the input for macaronic

content.5 To keep our study short enough for MTurk, we selected documents that contained

20− 25 sentences. A participant could complete up to 6 HITs (Human Intelligence Tasks)

corresponding to the 6 documents. Participants were given 25 minutes to complete each

HIT (on average, the participants took 12 minutes to complete the HITs). To prevent typos,

we used a 20k word English dictionary, which includes all the word types from the 6 Simple

Wikipedia documents. We provided no feedback regarding the correctness of guesses. We

recruited 128 English speaking MTurk participants and obtained 162 responses, with each

response encompassing a participant’s guesses over a full document.6 Participants were

compensated $4 per HIT.

4FastText pretrained embeddings were trained on more data.
5https://dumps.wikimedia.org/simplewiki/20190120/
6Participants self-reported their English proficiency, only native or fluent speakers were allowed to partici-

pate. Our HITs were only available to participants from the US.
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5.4.2 Experiment Conditions

We generated 9 macaronic versions (3 models {GSM,uGSM,DP } in combination with 3 rank

thresholds rmax ∈ {1, 4, 8}) for each of the 6 Simple Wikipedia documents. For each HIT,

an MTurk participant was randomly assigned one of the 9 macaronic versions.

Model rmax = 1 rmax = 8

GSM Hu Nile (‘‘an-nīl’’) ev a river um

Africa. Up is hu longest river

iñ Earth (about 6,650 km or 4,132

miles), though other rivers carry

more water...

Many ozvolomb types iv emoner live

in or near hu waters iv hu Nile,

including crocodiles, birds, fish

ñb many others. Not only do animals

depend iñ hu Nile for survival, but

also people who live there need up

zi everyday use like washing, as u

jopi supply, keeping crops watered

ñb other jobs...

Hu Nile (‘‘an-nīl’’) ev u river um

Africa. Up ev the longest river

on Earth (about 6,650 km or 4,132

miles), though other rivers carry

more water...

Emu ozvolomb types of emoner live

um or iul the waters of hu Uro,

including crocodiles, ultf, yvh

and emu others. Ip only do animals

depend iñ the Nile zi survival, but

also daudr who live there need up

zi everyday use like washing, ez a

jopi supply, keeping crops watered

ñb other jobs...

Table 5.4: Portions of one of our Simple Wikipedia articles. The document has been

converted into a macaronic document by the machine teacher using the GSM model.

Tables 5.4 to 5.6 shows the output for the GSM, uGSM and DP generic student models at
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two settings of rmax for one of the documents. In these experiments we use a synthetic L2

language.

Model rmax = 1 rmax = 8

uGSM The Nile (‘‘an-nīl’’) ev a river

um Africa. It ev hu longest river

on Earth (about 6,650 km or 4,132

miles), though other rivers carry

more jopi...

Many different pita of emoner live

in or near hu waters iv hu Nile,

including crocodiles, ultf, fish

and many others. Not mru do emoner

depend iñ hu Nile for survival, but

also people who live there need it

for everyday use like washing, as a

jopi supply, keeping crops watered

ñb other jobs...

Hu Nile (‘‘an-nīl’’) ev u river um

Africa. Up ev the longest river

iñ Earth (about 6,650 km or 4,132

miles), though other rivers carry

more jopi...

Many different pita of emoner live

um or near hu waters iv hu Nile,

including crocodiles, ultf, fish

and many others. Not mru do emoner

depend on the Nile for survival, id

also people who live there need it

zi everyday use like washing, as u

water supply, keeping crops watered

ñb other jobs...

Table 5.5: Portions of one of our Simple Wikipedia articles. The document has been

converted into a macaronic document by the machine teacher using the uGSM model.
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Model rmax = 1 rmax = 8

DP Hu Nile (‘‘an-nīl’’) ev a river um

Africa. Up ev hu longest river

on Earth (about 6,650 km or 4,132

miles), though other rivers carry

more water...

Many different types iv animals

live in or near hu waters iv hu

Nile, including crocodiles, birds,

fish and many others. Not only

do animals depend iñ hu Nile for

survival, but also people who live

there need it for everyday use like

washing, as u water supply, keeping

crops watered and other jobs...

Hu Nile (‘‘an-nīl’’) ev a river um

Africa. Up ev hu longest river

on Earth (about 6,650 km or 4,132

miles), though udho rivers carry

more water...

Many different pita of animals live

in or near hu waters of hu Nile,

including crocodiles, birds, fish

and many others. Not mru do animals

depend iñ hu Nile zi survival, id

also people who live there need it

zi everyday use like washing, ez a

water supply, keeping crops watered

and udho jobs...

Table 5.6: Portions of one of our Simple Wikipedia articles. The document has been

converted into a macaronic document by the machine teacher using the DP generic student

model. Only common function words seem to be replaced with their L2 translations.

The two columns show the effect of the rank threshold rmax. Note that this macaronic

document is 25 sentences long; here, we only show the first 2 sentences and another

middle 2 sentences to save space. We see that rmax controls the number of L2 words the

machine teacher deems guessable, which affects text readability. The increase in L2 words

is most noticeable with the GSM model. We also see that the DP model differs from the
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others by favoring high frequency words almost exclusively. While the GSM and uGSM

models similarly replace a number of high frequency words, they also occasionally replace

lower frequency word classes like nouns and adjectives (emoner, Emu, etc.). Table 5.2

summarizes our findings. The first section of 5.2 shows the percentage of tokens that were

deemed guessable by our machine teacher. The GSM model replaces more words as rmax

is increased to 8, but we see that MTurkers had a hard time guessing the meaning of the

replaced tokens: their guessing accuracy drops to 55% at rmax = 8 with the GSM model. The

uGSM model, however, displays a reluctance to replace too many tokens, even as rmax was

increased to 8.

We further analyzed the replacements and MTurk guesses based on word-class. We

tagged the L1 tokens with their part-of-speech and categorized tokens into open or closed

class following Universal Dependency guidelines (“Universal Dependencies v1: A Multi-

lingual Treebank Collection.”).7 Table 5.3 summarizes our analysis of model and human

behavior when the data is separated by word-class. The pink bars indicate the percentage of

tokens replaced per word-class. The blue bars represent the percentage of tokens from a

particular word-class that MTurk users guessed correctly. Thus, an ideal machine teacher

should strive for the highest possible pink bar while ensuring that the blue bar is as close

as possible to the pink. Our findings suggest that the uGSM model at rmax = 8 and the

GSM model at rmax = 4 show the desirable properties – high guessing accuracy and more

representation of L2 words (particularly open-class words).

7https://universaldependencies.org/u/pos/
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Metric Model Closed Open

Types Replaced
random 59 524

GSM 33 149

Guess Accuracy
random 62.06(±1.54) 39.36(±1.75)

GSM 74.91(±0.94) 61.96(±1.24)

Table 5.7: Results comparing our generic student based approach to a random baseline. The

first part shows the number of L2 word types exposed by each model for each word class.

The second part shows the average guess accuracy percentage for each model and word

class. 95% confidence intervals (in brackets) were computed using bootstrap resampling.

5.4.3 Random Baseline

So far we’ve compared different generic student models against each other, but is our

generic student based approach required at all? How much better (or worse) is this approach

compared to a random baseline? To answer these questions, we compare the GSM with

rmax = 4 model against a randomly generated macaronic document. As the name suggests,

word replacements are decided randomly for the random condition, but we ensure that the

number of tokens replaced in each sentence equals that from the GSM condition.

We used the 6 Simple Wikipedia documents from §5.4.1 and recruited 64 new MTurk

partipants who completed a total of 66 HITs (compensation was $4 per HIT). For each
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Model Closed Open

random 9.86(±0.94) 4.28(±0.69)

GSM 35.53(±1.03) 27.77(±1.03)

Table 5.8: Results of our L2 learning experiments where MTurk subjects simply read a

macaronic document and answered a vocabulary quiz at the end of the passage. The table

shows the average guess accuracy percentage along with 95% confidence intervals computed

from bootstrap resampling.

HIT, the participant was given either the randomly generated or the GSM based macaronic

document. Once again, participants were made to enter their guess for each L2 word that

appears in a sentence. The results are summarized in Table 5.7.

We find that randomly replacing words with glosses exposes more L2 word types (59

and 524 closed-class and open-class words respectively) while the GSM model is more

conservative with replacements (33 and 149). However, the random macaronic document is

much harder to comprehend, indicated by significantly lower average guess accuracies than

those with the GSM model. This is especially true for open-class words. Note that Table 5.7

shows the number of word types replaced across all 6 documents.
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5.4.4 Learning Evaluation

Our macaronic based approach relies on incidental learning, which states that if a novel

word is repeatedly presented to a student with sufficient context, the student will eventually

be able to learn the novel word. So far our experiments test MTurk participants on the

“guessability” of novel words in context, but not learning. To study if students can actually

learn the L2 words, we conduct an MTurk experiment where participants are simply required

to read a macaronic document (one sentence at a time). At the end of the document an L2

vocabulary quiz is given. Participants must enter the meaning of every L2 word type they

have seen during the reading phase.

Once again, we compare our GSM (rmax = 4) model against a random baseline using

the 6 Simple Wikipedia documents. 47 HITs were obtained from 45 MTurk participants

for this experiment. Participants were made aware that there would be a vocabulary quiz at

the end of the document. Our findings are summarized in Table 5.8. We find the accuracy

of guesses for the vocabulary quiz at the end of the document is considerably lower than

guesses with context. However, subjects still managed to retain 35.53% and 27.77% of

closed-class and open-class L2 word types respectively. On the other hand, when a random

macaronic document was presented to participants, their guess accuracy dropped to 9.86%

and 4.28% for closed and open class words respectively. Thus, even though more word

types were exposed by the random baseline, fewer words were retained.

Additionally, we would like to investigate how our approach could be extended to enable
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phrasal learning (which should consider word-ordering differences between the L1 and L2).

As the GSM and uGSM models showed the most promising results in our experiments, we

believe these models could serve as the baseline for future work.

5.5 Spelling-Aware Extension

So far, our generic student model ignores the fact that a novel word like Afrika is guessable

simply by its spelling similarity to Africa. Thus, we augment the generic student model

to use character n-grams. We choose the bidirectional generic student model for our

spelling-aware extension based on the pilot experiments detailed in §5.4.2. In addition to an

embedding per word type, we learn embeddings for character n-gram types that appear in

our L1 corpus. The row in E for a word w is now parameterized as:

Ẽ · w̃ +
∑︂
n

Ẽn · w̃n 1

1 · w̃n (5.19)

where Ẽ is the full-word embedding matrix and w̃ is a one-hot vector associated with the

word type w, Ẽn is a character n-gram embedding matrix and w̃n is a multi-hot vector

associated with all the character n-grams for the word type w. For each n, the summand

gives the average embedding of all n-grams in w (where 1 · w̃n counts these n-grams). We

set n to range from 3 to 4 (see §5.7). This formulation is similar to previous sub-word based

embedding models (Wieting et al., 2016; Bojanowski et al., 2017).
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Similarly, the embedding of an L2 word w is parameterized as

F̃ · w̃ +
∑︂
n

F̃n · w̃n 1

1 · w̃n (5.20)

Crucially, we initialize F̃n to µẼn (where µ > 0) so that L2 words can inherit part of

their initial embedding from similarly spelled L1 words: F̃4
Afri := µẼ4

Afri.8 But we allow

F̃n to diverge over time in case an n-gram functions differently in the two languages. In

the same way, we initialize each row of F̃ to the corresponding row of µ · Ẽ, if any, and

otherwise to 0. Our experiments set µ = 0.2 (see §5.7). We refer to this spelling-aware

extension to GSM as sGSM.

5.5.1 Scoring L2 embeddings

Did the simulated student learn correctly and usefully? Let P be the “reference set” of all

(L1 word, L2 gloss) pairs from all tokens in the entire document. We assess the machine

teacher’s success by how many of these pairs the simulated student has learned. (The student

may even succeed on some pairs that it has never been shown, thanks to n-gram clues.)

Specifically, we measure the “goodness” of the updated L2 word embedding matrix F.

For each pair p = (e, f) ∈ P , sort all the words in the entire L1 vocabulary according to

their cosine similarity to the L2 word f , and let rp denote the rank of e. For example, if

the student had managed to learn a matrix F whose embedding of f exactly equalled E’s

embedding of e, then rp would be 1. We then compute a mean reciprocal rank (MRR) score

8We set µ = 0.2 based on findings from our hyperparameter search (see §5.7).
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of F:

MRR(F) =
1

|P|
∑︂
p∈P

(︂ 1

rp
if rp ≤ rmax else 0

)︂
(5.21)

We set rmax = 4 based on our pilot study. This threshold has the effect of only giving credit

to an embedding of f such that the correct e is in the simulated student’s top 4 guesses. As a

result, §5.5.2’s machine teacher focuses on introducing L2 tokens whose meaning can be

deduced rather accurately from their single context (together with any prior exposure to

that L2 type). This makes the macaronic text comprehensible for a human student, rather

than frustrating to read. In our pilot study we found that rmax substantially improved human

learning.

5.5.2 Macaronic Configuration Search

Our current machine teacher produces the macaronic document greedily, one sentence at a

time. Actual documents produced are shown in ??.

Let Fprev be the student model’s embedding matrix after the reading the first n − 1

macaronic sentences. We evaluate a candidate next sentence x by the score MRR(F) where

F maximizes (5.5) and is thus the embedding matrix that the student would arrive at after

reading x as the nth macaronic sentence.

We use best-first search to seek a high-scoring x. A search state is a pair (i, x) where x is

a macaronic configuration (Table 5.1) whose first i tokens may be either L1 or L2, but whose

remaining tokens are still L1. The state’s score is obtained by evaluating x as described

119



CHAPTER 5. MACARONIC TEXT CONSTRUCTION

above. In the initial state, i = 0 and x is the nth sentence of the original L1 document. The

state (i, x) is a final state if i = |x|. Otherwise its two successors are (i+1, x) and (i+1, x′),

where x′ is identical to x except that the (i+1)th token has been replaced by its L2 gloss. The

search algorithm maintains a priority queue of states sorted by score. Initially, this contains

only the initial state. A step of the algorithm consists of popping the highest-scoring state

and, if it is not final, replacing it by its two successors. The queue is then pruned back to the

top 8 states. When the queue becomes empty, the algorithm returns the configuration x from

the highest-scoring final state that was ever popped.

5.6 Experiments with real L2

Does our machine teacher generate useful macaronic text? To answer this, we measure

whether human students (i) comprehend the L2 words in context, and (ii) retain knowledge

of those L2 words when they are later seen without context.

We assess (i) by displaying each successive sentence of a macaronic document to a

human student and asking them to guess the L1 meaning for each L2 token f in the sentence.

For a given machine teacher, all human subjects saw the same macaronic document, and

each subject’s comprehension score is the average quality of their guesses on all the L2

tokens presented by that teacher. A guess’s quality q ∈ [0, 1] is a thresholded cosine

similarity between the embeddings9 of the guessed word ê and the original L1 word e:

9Here we used pretrained word embeddings from Mikolov et al. (2018), in order to measure actual semantic
similarity.
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q = cs(e, ê) if cs(e, ê) ≥ τ else 0. Thus, ê = e obtains q = 1 (full credit), while q = 0 if

the guess is “too far” from the truth (as determined by τ ).

To assess (ii), we administer an L2 vocabulary quiz after having human subjects simply

read a macaronic passage (without any guessing as they are reading). They are then asked to

guess the L1 translation of each L2 word type that appeared at least once in the passage. We

used the same guess quality metric as in (i).10 This tests if human subjects naturally learn

the meanings of L2 words, in informative contexts, well enough to later translate them out

of context. The test requires only short-term retention, since we give the vocabulary quiz

immediately after a passage is read.

We compared results on macaronic documents constructed with the generic student

model (GSM), its spelling-aware variant (sGSM), and a random baseline. In the baseline,

tokens to replace are randomly chosen while ensuring that each sentence replaces the

same number of tokens as in the GSM document. This ignores context, spelling, and prior

exposures as reasons to replace a token.

Our evaluation was aimed at native English (L1) speakers learning Spanish or German

(L2). We recruited L2 “students” on Amazon Mechanical Turk (MTurk). They were absolute

beginners, selected using a placement test and self-reported L2 ability.

10If multiple L1 types e were glossed in the document with this L2 type, we generously use the e that
maximizes cs(e, ê).
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L2 Model Closed-class Open-class

Es

random 0.74± 0.0126(54) 0.61± 0.0134(17)

GSM 0.72± 0.0061(54) 0.70± 0.0084(17)

sGSM 0.82 ± 0.0038(41) 0.80 ± 0.0044(21)

De

random 0.59± 0.0054(34) 0.38± 0.0065(13)

GSM 0.80± 0.0033(34) 0.78± 0.0056(13)

sGSM 0.82 ± 0.0063(33) 0.79 ± 0.0062(14)

Table 5.9: Average token guess quality (τ = 0.6) in the comprehension experiments. The ±

denotes a 95% confidence interval computed via bootstrap resampling of the set of human

subjects. The % of L1 tokens replaced with L2 glosses is in parentheses. §5.8 evaluates with

other choices of τ .
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5.6.1 Comprehension Experiments

We used the first chapter of Jane Austen’s “Sense and Sensibility” for Spanish, and the first

60 sentences of Franz Kafka’s “Metamorphosis” for German. Bilingual speakers provided

the L2 glosses (see §5.9 for examples).

For English-Spanish, 11, 8, and 7 subjects were assigned macaronic documents generated

with sGSM, GSM, and the random baseline, respectively. The corresponding numbers for

English-German were 12, 7 and 7. A total of 39 subjects were used in these experiments

(some subjects did both languages). They were given 3 hours to complete the entire

document (average completion time was ≈ 1.5 hours) and were compensated $10.

Table 5.9 reports the mean comprehension score over all subjects, broken down into

comprehension of function words (closed-class POS) and content words (open-class POS).11

For Spanish, the sGSM-based teacher replaces more content words (but fewer function

words), and furthermore the replaced words in both cases are better understood on average,

which we hope leads to more engagement and more learning. For German, by contrast,

the number of words replaced does not increase under sGSM, and comprehension only

improves marginally. Both GSM and sGSM do strongly outperform the random baseline.

But the sGSM-based teacher only replaces a few additional cognates (hundert but not

Mutter), apparently because English-German cognates do not exhibit large exact character

n-gram overlap. We hypothesize that character skip n-grams might be more appropriate for

11https://universaldependencies.org/u/pos/
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L2 Model Closed-class Open-class

Es

random 0.47± 0.0058(60) 0.40± 0.0041(46)

GSM 0.48± 0.0084(60) 0.42± 0.0105(15)

sGSM 0.52 ± 0.0054(47) 0.50 ± 0.0037(24)

Table 5.10: Average type guess quality (τ = 0.6) in the retention experiment. The % of L2

gloss types that were shown in the macaronic document is in parentheses. §5.8 evaluates

with other choices of τ .

English-German.

5.6.2 Retention Experiments

For retention experiments we used the first 25 sentences of our English-Spanish dataset. New

participants were recruited and compensated $5. Each participant was assigned a macaronic

document generated with the sGSM, GSM or random model (20, 18, and 22 participants

respectively). As Table 5.10 shows, sGSM’s advantage over GSM on comprehension holds

up on retention. On the vocabulary quiz, students correctly translated > 30 of the 71 word

types they had seen (Table 5.15), and more than half when near-synonyms earned partial

credit (Table 5.10).
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5.7 Hyperparameter Search

We tuned the model hyperparameters by hand on separate English-Spanish data, namely the

second chapter of “Sense and Sensibility,” equipped with glosses. Hyperparameter tuning

results are reported in this appendix. All other English-Spanish results in the paper are on

the first chapter of “Sense and Sensibility,” which was held out for testing. We might have

improved the results on English-German by tuning separate hyperparameters for that setting.

The tables below show the effect of different hyperparameter choices on the quality

MRR(F) of the embeddings learned by the simulated student. Recall from §5.5.1 that the

MRR score evaluates F using all glosses, not just those used in a particular macaronic

document. Thus, it is comparable across the different macaronic documents produced by

different machine teachers.

QueueSize (§5.5.2) affects only how hard the machine teacher searches for macaronic

sentences that will help the simulated student. We find that larger QueueSize is in fact

valuable.

The other choices (Model, n-grams, µ) affect how the simulated student actually learns.

The machine teacher then searches for a document that will help that particular simulated

student learn as many of the words in the reference set as possible. Thus, the MRR score

is high to the extent that the simulated student “can be successfully taught.” By choosing

hyperparameters that achieve a high MRR score, we are assuming that human students are

adapted (or can adapt online) to be teachable.
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The scale factor µ (used only for sGSM) noticeably affects the macaronic document

generated by the machine teacher. Setting it high (µ = 1.0) has a adverse effect on the

MRR score. Table 5.11 shows how the MRR score of the simulated student (§5.5.1) varies

according to the student model’s µ value. Tables 5.12 and 5.13 show the result of the same

hyperparameter sweep on the number of L1 word tokens and types replaced with L2 glosses.

Note that µ only affects initialization of the F parameters. Thus, with µ = 0, the L2

word and subword embeddings are initialized to 0, but the simulated sGSM student still

has the ability to learn subword embeddings for both L1 and L2. This allows it to beat the

simulated GSM student.

We see that for sGSM, µ = 0.2 results in replacing the most words (both types and

tokens), and also has very nearly the highest MRR score. Thus, for sGSM, we decided to

use µ = 0.2 and allow both 3-gram and 4-gram embeddings.

5.8 Results Varying τ

L2 τ Model Closed-class Open-class

0.0

rand 0.81± 0.0084(54) 0.72± 0.0088(17)

GSM 0.80± 0.0045(54) 0.79± 0.0057(17)

sGSM 0.86± 0.0027(41) 0.84± 0.0032(21)

0.2

rand 0.81± 0.0085(54) 0.72± 0.0089(17)

126



CHAPTER 5. MACARONIC TEXT CONSTRUCTION

GSM 0.80± 0.0045(54) 0.79± 0.0057(17)

sGSM 0.86± 0.0027(41) 0.84± 0.0033(21)

0.4

rand 0.79± 0.0101(54) 0.66± 0.0117(17)

GSM 0.76± 0.0057(54) 0.75± 0.0071(17)

Es sGSM 0.84± 0.0033(41) 0.82± 0.0039(21)

0.6

random 0.74± 0.0126(54) 0.61± 0.0134(17)

GSM 0.72± 0.0061(54) 0.70± 0.0084(17)

sGSM 0.82± 0.0038(41) 0.80± 0.0044(21)

0.8

rand 0.62± 0.0143(54) 0.46± 0.0124(17)

GSM 0.59± 0.0081(54) 0.58± 0.0106(17)

sGSM 0.71± 0.0052(41) 0.67± 0.0062(21)

1.0

rand 0.62± 0.0143(54) 0.45± 0.0124(17)

GSM 0.59± 0.0081(54) 0.55± 0.0097(17)

sGSM 0.70± 0.0052(41) 0.64± 0.0063(21)

0.0

random 0.70± 0.0039(34) 0.56± 0.0046(13)

GSM 0.85± 0.0023(34) 0.84± 0.0039(13)

sGSM 0.87± 0.0045(33) 0.84± 0.0044(14)

0.2

random 0.69± 0.0042(34) 0.56± 0.0047(13)

GSM 0.85± 0.0024(34) 0.84± 0.0039(13)

sGSM 0.87± 0.0046(33) 0.84± 0.0044(14)
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0.4

random 0.64± 0.0052(34) 0.45± 0.0064(13)

GSM 0.83± 0.0029(34) 0.81± 0.0045(13)

De sGSM 0.84± 0.0055(33) 0.81± 0.0054(14)

0.6

random 0.59± 0.0054(34) 0.38± 0.0065(13)

GSM 0.80± 0.0033(34) 0.78± 0.0056(13)

sGSM 0.82± 0.0063(33) 0.79± 0.0062(14)

0.8

random 0.45± 0.0058(34) 0.25± 0.0061(13)

GSM 0.72± 0.0037(34) 0.66± 0.0081(13)

sGSM 0.75± 0.0079(33) 0.65± 0.0077(14)

1.0

random 0.45± 0.0058(34) 0.24± 0.0061(13)

GSM 0.71± 0.0040(34) 0.63± 0.0082(13)

sGSM 0.75± 0.0079(33) 0.63± 0.0081(14)

Table 5.14: An expanded version of Table 5.9 (human comprehension experiments), report-

ing results with various values of τ .

A more comprehensive variant of Table 5.9 is given in Table 5.14. This table reports the

same human-subjects experiments as before; it only varies the measure used to assess the

quality of the humans’ guesses, by varying the threshold τ . Note that τ = 1 assesses

exact-match accuracy, τ = 0.6 as in Table 5.9 corresponds roughly to synonymy (at least for

content words), and τ = 0 assesses average unthresholded cosine similarity. We find that

sGSM consistently outperforms both GSM and the random baseline over the entire range of τ .
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Model n-grams QueueSize
Scale Factor µ

1.0 0.4 0.2 0.1 0.05 0.0

sGSM 2,3,4 1 0.108 0.207 0.264 0.263 0.238 0.175

sGSM 3,4 1 0.113 0.199 0.258 0.274 0.277 0.189

sGSM 3,4 4 - - 0.267 0.286 - -

sGSM 3,4 8 - - 0.288 0.292 - -

GSM ∅ 1 0.159

GSM ∅ 4 0.171

GSM ∅ 8 0.172

Table 5.11: MRR scores obtained with different hyperparameter settings.

As we get closer to exact match, the random baseline suffers the largest drop in performance.

Similarly, Table 5.15 shows a expanded version of the retention results in Table 5.10.

The gap between the models is smaller on retention than it was on comprehension. However,

again sGSM > GSM > random across the range of τ . We find that for function words, the

random baseline performs as well as GSM as τ is increased. For content words, however, the

random baseline falls faster than GSM.

We warn that the numbers are not genuinely comparable across the 3 models, because

each model resulted in a different document and thus a different vocabulary quiz. Our

human subjects were asked to translate just the L2 words in the document they read. In
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Model n-grams QueueSize
Scale Factor µ

1.0 0.4 0.2 0.1 0.05 0.0

sGSM 2,3,4 1 149 301 327 275 201 247

sGSM 3,4 1 190 340 439 399 341 341

sGSM 3,4 4 - - 462 440 - -

sGSM 3,4 8 - - 478 450 - -

GSM ∅ 1 549

GSM ∅ 4 557

GSM ∅ 8 530

Table 5.12: Number of L1 tokens replaced by L2 glosses under different hyperparameter

settings.

particular, sGSM taught fewer total types (71) than GSM (75) or the random baseline (106).

All that Table 5.15 shows is that it taught its chosen types better (on average) than the other

methods taught their chosen types.

5.9 Macaronic Examples

Below, we display the actual macaronic documents generated by our methods. First few

paragraphs of “Sense and Sensibility” with the sGSM model using µ = 0.2, 3- and 4-grams,

priority queue size of 8, and rmax=4 are shown below:
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Model n-grams QueueSize
Scale Factor µ

1.0 0.4 0.2 0.1 0.05 0.0

sGSM 2,3,4 1 39 97 121 106 75 88

sGSM 3,4 1 44 97 125 124 112 99

sGSM 3,4 4 - - 124 127 - -

sGSM 3,4 8 - - 145 129 - -

GSM ∅ 1 106

GSM ∅ 4 111

GSM ∅ 8 114

Table 5.13: Number of distinct L2 word types present in the macaronic document under

different hyperparameter settings.

Sense y Sensibility

La family de Dashwood llevaba long been settled en Sussex.

Their estate era large, and their residencia was en Norland Park,

in el centre de their property, where, for muchas generations,

they habı́an lived en so respectable a manner as to engage el

general good opinion of los surrounding acquaintance. El late

owner de this propiedad was un single man, que lived to una

very advanced age, y que durante many years of his life, had a

constante companion and housekeeper in su sister. But ella death,
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que happened ten años antes his own, produced a great alteration

in su home; for to supply her loss, he invited and received into

his house la family of su sobrino señor Henry Dashwood, the

legal inheritor of the Norland estate, and the person to whom

he intended to bequeath it. En la society de su nephew y niece, y

their children, el old Gentleman’s days fueron comfortably spent.

Su attachment a them all increased. The constant attention de

Mr. y Mrs. Henry Dashwood to sus wishes, que proceeded no merely

from interest, but from goodness of heart, dio him every degree de

solid comfort which su age podı́a receive; and la cheerfulness of

the children added a relish to his existencia.

By un former marriage, Mr. Henry Dashwood tenı́a one son:

by su present lady, three hijas. El son, un steady respectable

young man, was amply provided for por the fortuna de his mother,

which habı́a been large, y half of which devolved on him on

his coming of edad. Por su own matrimonio, likewise, which

happened soon después, he added a his wealth. To him therefore

la succession a la Norland estate era no so really importante as

to his sisters; para their fortuna, independent de what pudiera

arise a ellas from su father’s inheriting that propiedad, could

ser but small. Su mother had nothing, y their father only seven

mil pounds en his own disposición; for la remaining moiety of his
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first esposa’s fortune was also secured to her child, and él tenı́a

sólo a life-interés in it.

el anciano gentleman died: his will was read, and like

almost todo other will, dio as tanto disappointment as pleasure.

He fue neither so unjust, ni so ungrateful, as para leave his

estate de his nephew; --but he left it a him en such terms as

destroyed half the valor de el bequest. Mr. Dashwood habı́a

wished for it more por el sake of his esposa and hijas than for

himself or su son; --but a his son, y su son’s son, un child

de four años old, it estaba secured, in tal a way, as a leave

a himself no power de providing por those que were most dear

para him, and who most necesitaban a provisión by any charge

on la estate, or por any sale de its valuable woods. El whole

fue tied arriba para the beneficio de this child, quien, in

occasional visits with his padre and mother at Norland, had tan

far gained on el affections de his uncle, by such attractions as

are by no means unusual in children of two o three years old; una

imperfect articulación, an earnest desire of having his own way,

many cunning tricks, and a great deal of noise, as to outweigh

all the value de all the attention which, for years, él habı́a

received from his niece and sus daughters. He meant no a ser

unkind, however, y, como a mark de his affection for las three
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girls, he left ellas un mil libras a-piece.
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Next, the first few paragraphs of “Sense and Sensibility” with the GSM model using

priority queue size of 8 and rmax=4.
Sense y Sensibility

La family de Dashwood llevaba long been settled en Sussex.

Su estate era large, and su residence estaba en Norland Park, in

el centre de their property, where, por many generations, they

had lived in so respectable una manner as a engage el general

good opinion de los surrounding acquaintance. El late owner de

esta estate was un single man, que lived to una very advanced

age, y who durante many years de su existencia, had una constant

companion y housekeeper in his sister. But ella death, que

happened ten years antes su own, produced a great alteration

in su home; for para supply her loss, él invited and received

into his house la family de su nephew Mr. Henry Dashwood, the

legal inheritor de the Norland estate, and the person to whom se

intended to bequeath it. In the society de su nephew and niece,

and sus children, el old Gentleman’s days fueron comfortably

spent. Su attachment a them all increased. La constant attention

de Mr. y Mrs. Henry Dashwood to sus wishes, which proceeded

not merely from interest, but de goodness de heart, dio him

every degree de solid comfort que his age could receive; y la

cheerfulness of the children added un relish a su existence.

By un former marriage, Mr. Henry Dashwood tenı́a one son:
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by su present lady, three hijas. El son, un steady respectable

joven man, was amply provided for por la fortune de su madre, que

habı́a been large, y half de cuya devolved on him on su coming de

edad. By su own marriage, likewise, que happened soon después,

he added a su wealth. Para him therefore la succession a la

Norland estate was no so really importante as to his sisters;

para their fortune, independent de what pudiera arise a them from

su father’s inheriting that property, could ser but small. Su

madre had nothing, y su padre only siete thousand pounds in su own

disposal; for la remaining moiety of his first wife’s fortune era

also secured a su child, y él had only una life-interest in ello.

el old gentleman died: su will was read, y like almost

every otro will, gave as tanto disappointment as pleasure. He fue

neither so unjust, nor so ungrateful, as to leave su estate from

his nephew; --but he left it to him en such terms como destroyed

half the valor of the bequest. Mr. Dashwood habı́a wished for it

más for el sake de su wife and daughters than para himself or su

hijo; --but a su hijo, y his son’s hijo, un child de four años

old, it estaba secured, en tal un way, as a leave a himself no

power of providing for aquellos who were most dear para him, y

who most needed un provision by any charge sobre la estate, or

por any sale de its valuable woods. El whole was tied arriba for
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el benefit de this child, quien, en ocasionales visits with his

father and mother at Norland, had tan far gained on the affections

of his uncle, by such attractions as are por no means unusual in

children of two or three years old; an imperfect articulation, an

earnest desire of having his own way, many cunning tricks, and

a gran deal of noise, as to outweigh todo the value of all the

attention which, for years, he had received from his niece and her

daughters. He meant no a ser unkind, however, y, como una mark

de su affection por las three girls, he left them un mil pounds

a-pieza.
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First few paragraphs of “The Metamorphosis” with the sGSM model using µ = 0.2, 3-

and 4-grams, priority queue size of 8, and rmax=4.
Metamorphosis

One morning, als Gregor Samsa woke from troubled dreams, he

fand himself transformed in seinem bed into einem horrible vermin.

He lay on seinem armour-like back, und if er lifted seinen head a

little he konnte see his brown belly, slightly domed und divided

by arches into stiff sections. The bedding war hardly able zu

cover it und seemed ready zu slide off any moment. His many legs,

pitifully thin compared mit the size von dem rest von him, waved

about helplessly as er looked.

‘‘What’s happened to mir?’’ he thought. His room, ein

proper human room although ein little too small, lay peacefully

between its four familiar walls. Eine collection of textile

samples lay spread out on the table - Samsa was ein travelling

salesman - and above it there hung a picture das he had recently

cut out von einer illustrated magazine und housed in einem nice,

gilded frame. It showed eine lady fitted out mit a fur hat und

fur boa who sat upright, raising einen heavy fur muff der covered

the whole von her lower arm towards dem viewer.

Gregor then turned zu look out the window at the dull

weather. Drops von rain could sein heard hitting the pane, welche

made him fühlen quite sad. ‘‘How about if ich sleep ein little
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bit longer and forget all diesen nonsense,’’ he thought, aber that

was something er was unable zu do because he war used zu sleeping

auf his right, und in seinem present state couldn’t bringen into

that position. However hard he threw sich onto seine right, he

always rolled zurück to where he was. He must haben tried it a

hundert times, shut seine eyes so dass er wouldn’t haben zu look

at die floundering legs, and only stopped when er began zu fühlen

einen mild, dull pain there das he hatte never felt before.

‘‘Ach, God,’’ he thought, ‘‘what a strenuous career it is

das I’ve chosen! Travelling day in und day out. Doing business

like diese takes viel more effort than doing your own business

at home, und auf top of that there’s the curse des travelling,

worries um making train connections, bad und irregular food,

contact mit different people all the time so that du can nie get

to know anyone or become friendly mit ihnen. It can alles go zum

Hell!’’ He felt a slight itch up auf his belly; pushed himself

slowly up auf his back towards dem headboard so dass he konnte

lift his head better; fand where das itch was, und saw that es

was covered mit vielen of little weißen spots which he didn’t know

what to make of; und als he versuchte to fühlen the place with

one von seinen legs he drew it quickly back because as soon as he

touched it he was overcome von a cold shudder.
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First few paragraphs of “The Metamorphosis” with the GSM model using priority queue

size of 8 and rmax=4.
Metamorphosis

One morning, als Gregor Samsa woke from troubled dreams, he

fand himself transformed in his bed into einem horrible vermin.

Er lay on seinem armour-like back, und if er lifted his head a

little er could see seinen brown belly, slightly domed und divided

by arches into stiff teile. das bedding was hardly fähig to

cover es und seemed ready zu slide off any moment. His many legs,

pitifully thin compared mit the size von dem rest von him, waved

about helplessly als er looked.

‘‘What’s happened to mir?’’ er thought. His room, ein

proper human room although ein little too klein, lay peacefully

between seinen four familiar walls. Eine collection of textile

samples lay spread out on the table - Samsa was ein travelling

salesman - und above it there hung a picture that er had recently

cut aus of einer illustrated magazine und housed in einem nice,

gilded frame. Es showed a lady fitted out with a fur hat and

fur boa who saß upright, raising a heavy fur muff der covered the

whole of her lower arm towards dem viewer.

Gregor then turned zu look out the window at the dull

weather. Drops von rain could sein heard hitting the pane, which

machte him feel ganz sad. ‘‘How about if ich sleep ein little
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bit longer and forget all diesen nonsense,’’ he thought, but

that war something he was unable to tun because er was used to

sleeping auf his right, and in his present state couldn’t get into

that position. However hard he warf himself onto seine right, he

always rolled zurück to wo he was. Er must haben tried it ein

hundred times, shut seine eyes so dass he wouldn’t haben to sehen

at die floundering legs, und only stopped when he begann to feel

einen mild, dull pain there that he hatte nie felt before.

‘‘Ach, God,’’ he thought, ‘‘what a strenuous career it ist

that I’ve chosen! Travelling day in und day aus. Doing business

like diese takes much mehr effort than doing your own business at

home, und on oben of that there’s der curse of travelling, worries

um making train connections, bad and irregular food, contact with

different people all the time so that you kannst nie get to know

anyone or become friendly with ihnen. It kann all go to Teufel!’’

He felt ein slight itch up auf seinem belly; pushed himself slowly

up auf his back towards dem headboard so dass he could lift his

head better; fand where das itch was, and saw that it was besetzt

with lots of little weißen spots which he didn’t know what to

make of; and als he tried to feel the place with one of his legs

he drew it quickly back because as soon as he touched it he was

overcome by a cold shudder.
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5.10 Conclusion

We presented a method to generate macaronic (mixed-language) documents to aid foreign

language learners with vocabulary acquisition. Our key idea is to derive a model of student

learning from only a cloze language model, which uses both context and spelling fea-

tures. We find that our model-based teacher generates comprehensible macaronic text

that promotes vocabulary learning. We find noticeable differences between the word

replacement choices by the GSM (only uses context) and sGSM (uses spelling and con-

text) models, especially in the English-Spanish case shown in §5.9. We find more L2

replaces for words that have a high overlap with their spelling in English. For example,

existencia, fortuna, matrimonio, propiedad, necesitaban, beneficio,

articulacion, interés, importante, constante and residencia were all

replaced using the sGSM model. As futher confirmation, we find exact replacements

were also selected by the sGSM model, such as Dashwood, Park and general. The

GSM model replaced fewer tokens with high-overlap, ocasionales, importante and

existencia can be seen in L2. We leave the task of extending it to phrasal translation

and incorporating word reordering as future work. We also leave the exploration of al-

ternate character-based compositions such as Kim et al. (2016) for future work. Beyond

that, we envision machine teaching interfaces in which the student reader interacts with

the macaronic text—advancing through the document, clicking on words for hints, and

facing occasional quizzes (Renduchintala et al., 2016b)—and with other educational stimuli.
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As we began to explore in Renduchintala et al. (2016a) and Renduchintala, Koehn, and

Eisner (2017), interactions provide feedback that the machine teacher could use to adjust

its model of the student’s lexicons (here E,F), inference (here θf ,θb,θh, µ), and learning

(here λ). In this context, we are interested in using models that are student-specific (to

reflect individual learning styles), stochastic (since the student’s observed behavior may be

inconsistent owing to distraction or fatigue), and able to model forgetting as well as learning

(Settles and Meeder, 2016).
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L2 τ Model Closed-class Open-class

Es

0.0

random 0.67± 0.0037(60) 0.60± 0.0027(46)

GSM 0.67± 0.0060(60) 0.62± 0.0076(15)

sGSM 0.71± 0.0035(47) 0.68± 0.0028(24)

0.2

random 0.67± 0.0037(60) 0.60± 0.0027(46)

GSM 0.67± 0.0061(60) 0.61± 0.0080(15)

sGSM 0.71± 0.0036(47) 0.67± 0.0029(24)

0.4

random 0.60± 0.0051(60) 0.50± 0.0037(46)

GSM 0.60± 0.0086(60) 0.51± 0.0106(15)

sGSM 0.66± 0.0044(47) 0.61± 0.0037(24)

0.6

random 0.47± 0.0058(60) 0.40± 0.0041(46)

GSM 0.48± 0.0084(60) 0.42± 0.0105(15)

sGSM 0.52± 0.0054(47) 0.50± 0.0037(24)

0.8

random 0.40± 0.0053(60) 0.30± 0.0032(46)

GSM 0.41± 0.0078(60) 0.37± 0.0097(15)

sGSM 0.46± 0.0055(47) 0.41± 0.0041(24)

1.0

random 0.40± 0.0053(60) 0.29± 0.0031(46)

GSM 0.40± 0.0077(60) 0.36± 0.0092(15)

sGSM 0.45± 0.0053(47) 0.39± 0.0042(24)

Table 5.15: An expanded version of Table 5.10 (human retention experiments), reporting

results with various values of τ .
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Knowledge Tracing in Sequential

Learning of Inflected Vocabulary

Our macaronic framework facilitates learning novel vocabulary and linguistic structures

while a student is progressing through a document sequentially. In doing so, the student

should (hopefully) acquire new knowledge but may also forget what they have previously

learned. Furthermore, new evidence, in the form of a new macaronic sentence for example,

might force the student to adjust their understanding of previously seen L2 words and

structures.

In other words, the previous chapters were concerned with what a student can learn

when presented with a macaronic sentence. In chapters Chapter 3 and Chapter 5 we make

simplistic assumptions about what the student already knows and model what they gain

from a new macaronic stimulus. In this chapter, we study knowledge tracing in the context
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of inflection learning task. We view the learning process as a sequence of smaller learning

events and model the interaction between new knowledge (arriving via some new evidence,

perhaps a macaronic sentence or, in this chapter, a flash card), existing knowledge which

could be corrupted by forgetting or confusing similar vocabulary items etc.

Knowledge tracing attempts to reconstruct when a student acquired (or forgot) each

of several facts. Yet we often hear that “learning is not just memorizing facts.” Facts are

not atomic objects to be discretely and independently manipulated. Rather, we suppose, a

student who recalls a fact in a given setting is demonstrating a skill—by solving a structured

prediction problem that is akin to reconstructive memory (Schacter, 1989; Posner, 1989) or

pattern completion (Hopfield, 1982; Smolensky, 1986). The attempt at structured prediction

may draw on many cooperating feature weights, some of which may be shared with other

facts or skills.

In this chapter, we study models for knowledge tracing for the task of foreign-language

vocabulary inflection learning, we will adopt a specific structured prediction model and

learning algorithm. Different knowledge states correspond to model parameter settings

(feature weights). Different learning styles correspond to different hyperparameters that

govern the learning algorithm.1 As we interact with each student through a simple online

tutoring system, we would like to track their evolving knowledge state and identify their

learning style. That is, we would like to discover parameters and hyperparameters that can

explain the evidence so far and predict how the student will react in future. This could

1currently, we assume that all students share the same hyperparameters (same learning style), although
each student will have their own parameters, which change as they learn.
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help us make good future choices about how to instruct this student, although we leave this

reinforcement learning problem to future work. We show that we can predict the student’s

next answer.

In short, we expand the notion of a knowledge tracing model to include representations

for a student’s (i) current knowledge, (ii) retention of knowledge, and (iii) acquisition of new

knowledge. Our reconstruction of the student’s knowledge state remains interpretable, since

it corresponds to the weights of hand-designed features (sub-skills). Interpretability may

help a future teaching system provide useful feedback to students and to human teachers,

and help it construct educational stimuli that are targeted at improving particular sub-skills,

such as features that select correct verb suffixes.

As mentioned, we consider a verb conjugation task instead of a macaronic learning task,

where a foreign language learner learns the verb conjugation paradigm by reviewing and

interacting with a series of flash cards. This task is a good testbed, as it needs the learner to

deploy sub-word features and to generalize to new examples. For example, a student learning

Spanish verb conjugation might encounter pairs such as (tú entras, you enter), (yo

miro, I watch). Using these examples, the student needs to recognize suffix patterns

and apply them to new pairs seen such as (yo entro, I enter). While we considered

sub-word features even in out macaronic experiments, the verb inflection task is more

focused on sub-word based generalizations that the student must understand in order to

perform the task.

Vocabulary learning presents a challenging learning environment due to the large number
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of skills (words) that need to be traced. Learning vocabulary in conjunction with inflection

further complicates the challenge due to the number of new sub-skills that are introduced.

Huang, Guerra, and Brusilovsky (2016) suggest that modeling sub-skill interaction is crucial

to several knowledge tracing domains. For our domain, a log-linear formulation elegantly

allows for arbitrary sub-skills via feature functions.

6.1 Related Work

Bayesian knowledge tracing (Corbett and Anderson, 1994) (BKT) has long been the standard

method to infer a student’s knowledge from his or her performance on a sequence of task

items. In BKT, each skill is modeled by an HMM with two hidden states (“known” or

“not-known”), and the probability of success on an item depends on the state of the skill

it exercises. Transition and emission probabilities are learned from the performance data

using Expectation Maximization (EM). Many extensions of BKT have been investigated,

including personalization (e.g., Lee and Brunskill, 2012; Khajah et al., 2014a) and modeling

item difficulty (Khajah et al., 2014b).

Our approach could be called Parametric Knowledge Tracing (PKT) because we take a

student’s knowledge to be a vector of prediction parameters (feature weights) rather than a

vector of skill bits. Although several BKT variants (Koedinger et al., 2011; Xu and Mostow,

2012; González-Brenes, Huang, and Brusilovsky, 2014) have modeled the fact that related

skills share sub-skills or features, that work does not associate a real-valued weight with
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each feature at each time. Either skills are still represented with separate HMMs, whose

transition and/or emission probabilities are parameterized in terms of shared features with

time-invariant weights; or else HMMs are associated with the individual sub-skills, and the

performance of a skill depends on which of its subskills are in the “known” state.

Our current version is not Bayesian since it assumes deterministic updates (but see

footnote 4). A closely related line of work with deterministic updates is deep knowledge

tracing (DKT) (Piech et al., 2015), which applied a classical LSTM model (Hochreiter and

Schmidhuber, 1997) to knowledge tracing and showed strong improvements over BKT.

Our PKT model differs from DKT in that the student’s state at each time step is a more

interpretable feature vector, and the state update rule is also interpretable—it is a type of

error-correcting learning rule. In addition, the student’s state is able to predict the student’s

actual response and not merely whether the response was correct. We expect that having

an interpretable feature vector has better inductive bias (see experiment in section 6.6.1),

and that it may be useful to plan future actions by smart flash card systems. Moreover, in

this work we test different plausible state update rules and see how they fit actual student

responses, in orer to gain insight about learning.

Most recently, Settles and Meeder (2016)’s half-life regression assumes that a student’s

retention of a particular skill exponentially decays with time and learns a parameter that

models the rate of decay (“half-life regression”). Like González-Brenes, Huang, and

Brusilovsky (2014) and Settles and Meeder (2016), our model leverages a feature-rich

formulation to predict the probability of a learner correctly remembering a skill, but can
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also capture complex spacing/retention patterns using a neural gating mechanism. Another

distinction between our work and half-life regression is that we focus on knowledge tracing

within a single session, while half-life regression collapses a session into a single data point

and operates on many such data points over longer time spans.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.1: Screen grabs of card modalities during training. These examples show cards for

a native English speaker learning Spanish verb conjugation. Fig 6.1a is an EX card, Fig 6.1b

shows a MC card before the student has made a selection, and Fig 6.1c and 6.1d show MC

cards after the student has made an incorrect or correct selection respectively, Fig 6.1e shows

a MC card that is giving the student another attempt (the system randomly decides to give

the student up to three additional attempts), Fig 6.1f shows a TP card where a student is

completing an answer, Fig 6.1g shows a TP card that has marked a student answer wrong

and then revealed the right answer (the reveal is decided randomly), and finally Fig 6.1h

shows a card that is giving a student feedback for their answer.
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6.2 Verb Conjugation Task

We devised a flash card training system to teach verb conjugations in a foreign language. In

this study, we only asked the student to translate from the foreign language to English, not

vice-versa.2

6.2.1 Task Setup

We consider a setting where students go through a series of interactive flash cards during a

training session. Figure 6.1 shows the three types of cards: (i) Example (EX) cards simply

display a foreign phrase and its English translation (for 7 seconds). (ii) Multiple-Choice

(MC) cards show a single foreign phrase and require the student to select one of five possible

English phrases shown as options. (iii) Typing (TP) cards show a foreign phrase and a text

input box, requiring the student to type out what they think is the English translation. Our

system can provide feedback for each student response. (i) Indicative Feedback: This refers

to marking a student’s answer as correct or incorrect (Fig. 6.1c, 6.1d and 6.1h). Indicative

feedback is always shown for both MC and TP cards. (ii) Explicit Feedback: If the student

makes an error on a TP card, the system has a 50% chance of showing them the true answer

(Fig. 6.1g). (iii) Retry: If the student makes an error on a MC card, the system has a 50%

chance of allowing them to try again, up to a maximum of 3 attempts.

2We would regard these as two separate skills that share parameters to some degree, an interesting subject
for future study.
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Categories Inf SPre,1,N SPre,2,N SPre,3,M SPre,3,F SF,1,N SF,2,N SF,3,M SF,3,F SP,1,N SP,2,N SP,3,M SP,3,F

acceptar yo acepto tú aceptas él acepta ella acepta yo aceptaré tú aceptarás él aceptará ella aceptará yo acepté tú aceptaste él aceptó ella aceptó

to accept I accept you accept he accepts she accepts I will accept you will accept* he will accept she will accept I accepted* you accepted he accepted she accepted

entrar yo entro tú entras él entra ella entra yo entraré tú entrarás él entrará ella entrará yo entré tú entraste él entró ella entró
Lemma

to enter I enter you enter he enters she enters I will enter you will enter he will enter she will enter I entered you entered he entered she entered

mirar yo miro tú miras él mira ella mira yo miraré tú mirarás él mirará ella mirará yo miré tú miraste él miró ella miró

to watch I watch* you watch* he watches* she watches I will watch you will watch* he will watch she will watch I watched you watched he watched* she watched

Table 6.1: Content used in training sequences. Phrase pairs with * were used for the quiz

at the end of the training sequence. This Spanish content was then transformed using the

method in section 6.5.1.

6.2.2 Task Content

In this particular task we used three verb lemmas, each inflected in 13 different ways

(Table 6.1). The inflections included three tenses (simple past, present, and future) in each

of four persons (first, second, third masculine, third feminine), as well as the infinitive

form. We ensured that each surface realization was unique and regular, resulting in 39

possible phrases.3 Seven phrases from this set were randomly selected for a quiz, which is

shown at the end of the training session, leaving 32 phrases that a student may see in the

training session. The student’s responses on the quiz do not receive any feedback from the

system.We also limited the training session to 35 cards (some of which may require multiple

rounds of interaction, owing to retries). All of the methods presented in this paper could be

applied to larger content sets as well.

3The inflected surface forms included explicit pronouns.
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6.3 Notation

We will use the following conventions in this paper. System actions at, student responses

yt, and feedback items a′t are subscripted by a time 1 ≤ t ≤ T . Other subscripts pick out

elements of vectors or matrices. Ordinary lowercase letters indicate scalars (α, β, etc.),

boldfaced lowercase letters indicate vectors (θ, y, wzx), and boldfaced uppercase letters

indicate matrices (Φ, Whh, etc.). The roman-font superscripts are part of the vector or

matrix name.

6.4 Student Models

6.4.1 Observable Student Behavior

A flash card is a structured object a = (x,O), where x ∈ X is the foreign phrase and O is

a set of allowed responses. For an MC card, O is the set of 5 multiple-choice options on

that card (or fewer on a retry attempt). For a EX or TP card, O is the set of all 39 English

phrases (the TP user interface prevents the student from submitting a guess outside this set).

For non-EX cards, we assume the student samples their response y ∈ O from a log-linear

distribution parameterized by their knowledge state θ ∈ Rd:

p(y | a; θ) = p(y | x,O; θ)

=
exp(θ · ϕ(x, y))∑︁

y′∈O exp(θ · ϕ(x, y′)) (6.1)
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where ϕ(x, y) ∈ {0, 1}d is a feature vector extracted from the (x, y) pair.

6.4.2 Feature Design

The student’s knowledge state is described by the weights θ placed on the features ϕ(x, y) in

equation (6.1). We assume the following binary features will suffice to describe the student’s

behavior.

• Phrasal features: We include a unique indicator feature for each possible (x, y) pair,

yielding 392 features. For example, there exists a feature that fires iff x = yo miro ∧

y = I enter.

• Word features: We include indicator features for all (source word, target word) pairs:

e.g., yo ∈ x ∧ enter ∈ y. (These words need not be aligned.)

• Morpheme features: We include indicator features for all (w,mc) pairs, where w is

a word of the source phrase x, and m is a possible tense, person, or number for the

target phrase y (drawn from Table 6.1). For example, m might be 1st (first person)

or SPre (simple present).

• Prefix and suffix features: For each word or morpheme feature that fires, 8 backoff

features also fire, where the source word and (if present) the target word are replaced

by their first or last i characters, for i ∈ {1, 2, 3, 4}.

These templates yield about 4600 features in all, so the knowledge state has d ≈ 4600

dimensions.
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6.4.3 Learning Models

We now turn to the question of modeling how the student’s knowledge state changes during

their session. θt denotes the state at the start of round t. We take θ1 = 0 and assume that

the student uses a deterministic update rule of the following form:4

θt+1 = βt ⊙ θt +αt ⊙ ut (6.2)

where ut is an update vector that depends on the student’s experience (at, yt, a
′
t) at round t.

In general, we can regard αt ∈ (0, 1)d as modeling the rates at which the learner updates

the various parameters according to ut, and βt ∈ (0, 1)d as modeling the rates at which

those parameters are forgotten. These vectors correspond respectively to the input gates and

forget gates in recurrent neural network architectures such as the LSTM (Hochreiter and

Schmidhuber, 1997) or GRU (Cho et al., 2014). As in those architectures, we will use neural

networks to choose αt,βt at each time step t, so that they may be sensitive in nonlinear

ways to the context at round t.

Why this form? First imagine that the student is learning by stochastic gradient descent

on some L2-regularized loss function C· ∥ θ ∥2 +∑︁
t Lt(θ). This algorithm’s update rule

has the simplified form

θt+1 = βt · θt + αt · ut (6.3)

4Since learning is not perfectly predictable, it would be more realistic to compute θt by a stochastic
update—or equivalently, by a deterministic update that also depends on a random noise vector ϵt (which is
drawn from, say, a Gaussian). These noise vectors are “nuisance parameters,” but rather than integrating over
their possible values, a straightforward approximation is to optimize them by gradient descent—along with the
other update parameters—so as to locally maximize likelihood.
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where ut = −∇Lt(θ) is the steepest-descent direction on example t, αt > 0 is the learning

rate at time t, and βt = 1− αtC handles the weight decay due to following the gradient of

the regularizer.

Adaptive versions of stochastic gradient descent—such as AdaGrad (Duchi, Hazan, and

Singer, 2011) and AdaDelta (Zeiler, 2012)—are more like our full rule (6.2) in that they

allow different learning rates for different parameters.

6.4.3.1 Schemes for the Update Vector ut

We assume that ut is the gradient of some log-probability, so that the student learns by

trying to increase the log-probability of the correct answer. However, the student does not

always observe the correct answer y. For example, there is no output label provided when

the student only receives feedback that their answer is incorrect. Even in such cases, the

student can change their knowledge state.

In this section, we define schemes for defining ut from the experience (at, yt, a
′
t) at

round t. Recall that at = (xt,Ot). We omit the t subscripts below.

Suppose the student is told that a particular phrase y ∈ O is the correct translation of x

(via an EX card or via feedback on an answer to an MC or TP card). Then an apt strategy
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for the student would be to use the following gradient:5

∆✓ = ∇θ log p(y | x,O; θ) (6.4)

= ϕ(x, y)−
∑︂
y′∈O

p(y′ | x)ϕ(x, y′)

If the student is told that y is incorrect, an apt strategy is to move probability mass

collectively to the other available options, increasing their total probability, since one of

those options must be correct. We call this the redistribution gradient (RG):

∆✗ = ∇θ log p(O − {y} | x,O; θ) (6.5)

=
∑︂

y′∈O−{y}

p(y′ | x, y′ ̸= y)ϕ(x, y′) (6.6)

−
∑︂
y′∈O

p(y′ | x)ϕ(x, y′)

where p(y′ | x, y′ ̸= y) is a renormalized distribution over just the options y′ ∈ O − {y}.

Note that if the student selects two wrong answers y1, y2 in a row on an MC card, the

first update will subtract the average features of O and add those of O − {y1}; the second

update will subtract the average features of O − {y1} and add those of O − {y1, y2}. The

intermediate addition and subtraction cancel out if the same α vector is used at both rounds,

so the net effect is to shift probability mass from the 5 initial options to the 3 remaining

ones.6

An alternate scheme for incorrect y is to use −∆✓. We call this negative gradient (NG).
5An objection is that for an EX or TP card, the student may not actually know the exact set of options O in

the denominator. We attempted setting O to be the set of English phrases the student has seen prior to the
current question. Though intuitive, this setting performed worse on all the update and gating schemes.

6Arguably, a zeroth update should be allowed as well: upon first viewing the MC card, the student should
have the chance to subtract the average features of the full set of possibilities and add those of the 5 options in
O, since again, the system is implying that one of those 5 options must be correct.
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Update Scheme Correct Incorrect

redistribution (RG) ut = ∆✓ ut = ∆✗

negative grad. (NG) ut = ∆✓ ut = −∆✓

feature vector (FG) ut = ϕ(x, y) ut = −ϕ(x, y)

Table 6.2: Summary of update schemes (other than RNG).

Since the RG and NG update vectors both worked well for handling incorrect y, we

also tried linearly interpolating them (RNG), with ut = γt ⊙∆✗ + (1− γt)⊙−∆✓. The

interpolation vector γt has elements in (0, 1), and may depend on the context (possibly

different for MC and EX cards, for example).

Finally, the feature vector (FG) scheme simply adds the features ϕ(x, y) when y is correct

or subtracts them when y is incorrect. This is appropriate for a student who pays attention

only to y, without bothering to note that the alternative options in O are (respectively)

incorrect or correct.

Recall from section 6.2.1 that the system sometimes gives both indicative and explicit

feedback, telling the student that one phrase is incorrect and a different phrase is correct.

We treat these as two successive updates with update vectors ut and ut+1. Notice that in

the FG scheme, adding this pair of update vectors resembles a perceptron update. Table 6.2

summarizes our update schemes.
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6.4.3.2 Schemes for the Gates αt,βt,γt

We characterize each update t by a 7-dimensional context vector ct, which summarizes

what the student has experienced. The first three elements in ct are binary indicators of the

type of flash card (EX, MC or TP). The next three elements are binary indicators of the

type of information that caused the update: correct student answer, incorrect student answer,

or revealed answer (via an EX card or explicit feedback). As a reminder, the system can

respond with an indication that the answer is correct or incorrect, or it can reveal the answer.

Finally, the last element of ct is 1/|O|, the chance probability of success on this card. From

ct, we define

αt = σ(Wαct + bα1) ∈ (0, 1)d (6.7)

βt = σ(Wβct−1 + bβ1) ∈ (0, 1)d (6.8)

γt = σ(Wγct + bγ1) ∈ (0, 1)d (6.9)

where c0 = 0. Each gate vector is now parameterized by a weight matrix W ∈ Rd×7, where

d is the dimensionality of the gradient and knowledge state.

We also tried simpler versions of this model. In the vector model (VM), we define

αt = σ(bα), and βt,γt similarly. These vectors do not vary with time and simply reflect

that some parameters are more labile than others. Finally, the scalar model (SM) defines

αt = σ(bα1), so that all parameters are equally labile. One could also imagine tying the

gates for features derived from the same template, meaning that some kinds of features

(in some contexts) are more labile than others, or reducing the number of parameters by
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learning low-rank W matrices.

While we also tried augmenting the context vector ct with the knowledge state θt, this

resulted in far too many parameters to train well, and did not help performance in pilot tests.

6.4.4 Parameter Estimation

We tune the W and b parameters of the model by maximum likelihood, so as to better

predict the students’ responses yt. The likelihood function is

p(y1, . . . yT | at, . . . aT ) =
T∏︂
t=1

p(yt | a1:t, y1:t−1, a
′
1:t−1)

=
T∏︂
t=1

p(yt | at;θt) (6.10)

where we take p(yt | · · · ) = 1 at steps where the student makes no response (EX cards

and explicit feedback). Note that the model assumes that θt is a sufficient statistic of the

student’s past experiences.

For each (update scheme, gating scheme) combination, we trained the parameters using

SGD with RMSProp updates (Tieleman and Hinton, 2012) to maximize the regularized

log-likelihood

∑︂
t,τt=0

log p(yt | xt;θt)− C· ∥W ∥2 (6.11)

summed over all students. Note that θt depends on the parameters through the gated update

rule (6.2). The development set was used for early stopping and to tune the regularization

parameter C.7

7We searched C ∈ {0.00025, 0.0005, 0.001, . . ., 0.01, 0.025, 0.05, 0.1} for each gating model and update
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6.5 Data Collection

We recruited 153 unique “students” via Amazon Mechanical Turk (MTurk). MTurk partici-

pants were compensated $1 for completing the training and test sessions and a bonus of $10

was given to the three top scoring students. In our dataset, we retained only the 121 students

who answered all questions.

6.5.1 Language Obfuscation

Fig. 6.1 shows a few example flash cards for a native English speaker learning Spanish.

Fig. 6.1 shows all our Spanish-English phrase pairs. In our actual task, however, we invented

an artificial language for the MTurk students to learn, which allowed us to ignore the problem

of students with different initial knowledge levels. We generated our artificial language

by enciphering the Spanish orthographic representations. We created a mapping from the

true source string alphabet to an alternative, manually defined alphabet, while attempting to

preserve pronounceability (by mapping vowels to vowels, etc.). For example, mirar was

transformed into melil and tú aceptas became pi icedpiz.

scheme combination. C = 0.0025 gave best results for the CM models, 0.01 for VM and 0.0005 for SM.
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6.5.2 Card Ordering Policy

In the future, we expect to use planning or reinforcement learning to choose the sequence of

stimuli for the student. For the present study of student behavior, however, we hand-designed

a simple stochastic policy for choosing the stimuli.

The policy must decide what foreign phrase and card modality to use at each training

step. Our policy likes to repeat phrases with which participants had trouble—in hopes that

these already-taught phrases are on the verge of being learned. It also likes to pick out new

phrases. This was inspired by the popular Leitner (1972) approach, which devised a system

of buckets that control how frequently an item is reviewed by a student. Leitner proposed

buckets with review frequency rates of every day, every 2 days, every 4 days and so on.

For each foreign phrase x ∈ X , we maintain a novelty score vx, which is a function

of the number of times the phrase is exposed to a student and an error score ex, which is

a function of the number of times the student incorrectly responded to the phrase. These

scores are initialized to 1 and updated as follows:8

vx ← vx − 1 when x is viewed

ex ←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2ex when student gets x wrong

0.5ex when student gets x right

x ∼ g(v) + g(e)

2
(6.12)

8Arguably we should have updated ex instead by adding/subtracting 1, since it will be exponentiated later.
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On each round, we sample a phrase x from either Pv or Pe (equal probability); these

distributions are computed by applying a softmax g(.) over the vectors v and e respectively

(see Eq. 6.12). Once the phrase x is decided, the modality (EX, MC, TP) is chosen

stochastically using probabilities (0.2, 0.4, 0.4), except that probabilities (1, 0, 0) are used

for the first example of the session, and (0.4, 0.6, 0) if x is not “TP-qualified.” A phrase is

TP-qualified if the student has seen both x’s pronoun and x’s verb lemma on previous cards

(even if their correct translation was not revealed). For an MC card, the distractor phrases

are sampled uniformly without replacement from the 38 other phrases.

6.6 Results & Experiments

We partitioned the students into three groups: 80 students for training, 20 for development,

and 21 for testing. Most students found the task difficult; the average score on the 7-question

quiz—was 2.81 correct, with maximum score of 6. (Recall from section 6.2.2 that the quiz

questions were typing questions, not multiple choice questions.) The histogram of user

performance is shown in Fig. 6.2.

After constructing each model, we evaluated it on the held-out data: the 728 responses

from the 21 testing students. We measure the log-probability under the model of each actual

response (“cross-entropy”), and also the fraction of responses that were correctly predicted

if our prediction was the model’s max-probability response (“accuracy”).

Table 6.3 shows the results of our experiment. All of our models were predictive, doing
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Figure 6.2: Quiz performance distribution (after removing users who scored 0).

far better than a uniform baseline that assigned equal probability 1/|O| to all options. Our

best models are shown in the final two lines, RNG+VM and RNG+CM.

Which update scheme was best? Interestingly, although the RG update vector is princi-

pled from a machine learning viewpoint, the NG update vector sometimes achieved better

accuracy—though worse perplexity—when predicting the responses of human learners.9

We got our best results on both metrics by interpolating between RG and NG (the RNG

scheme). Recall that the NG scheme was motivated by the notion that students who guessed

wrong may not study the alternative answers (even though one is correct), either because

it is too much trouble to study them or because (for a TP card) those alternatives are not

actually shown.

Which gating mechanism was best? In almost all cases, we found that more parameters

helped, with CM > VM > SM on accuracy, and a similar pattern on cross-entropy (with

VM sometimes winning but only slightly). In short, it helps to use different learning rates
9Even the FG vector sometimes won (on both metrics!), but this happened only with the worst gating

mechanism, SM.
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for different features, and it probably helps to make them sensitive to the learning context.

MC MCC MCIC TP TPC TPIC
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Figure 6.3: Plot comparing the models on test data under different conditions. Conditions

MC and TP indicate Multiple-choice and Typing questions respectively. These are broken

down to the cases where the student answers them correctly C and incorrectly IC. SM, VM,

and CM represent scalar, vector, and context retention and acquisition gates (shown with

different colors), respectively, while RG, NG and FG are redistribution, negative and feature

vector update schemes(shown with different hatching patterns).

Surprisingly, the simple FG scheme outperformed both RG and NG when used in

conjunction with a scalar retention and acquisition gate. This, however, did not extend to

more complex gates.
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Update Scheme Gating Mechanism accuracy cross-ent.

(Uniform baseline) 0.133 2.459

FG SM 0.239∗ 2.362

FG VM 0.357† 2.130

FG CM 0.401 2.025

RG SM 0.135 3.194

RG VM 0.397† 1.909

RG CM 0.405 1.938

NG SM 0.185∗ 4.674

NG VM 0.394† 2.320

NG CM 0.449†∗ 2.244

RNG (mixed) SM 0.183 3.502

RNG (mixed) VM 0.427 1.855

RNG (mixed) CM 0.449 1.888

Table 6.3: Table summarizing prediction accuracy and cross-entropy (in nats per prediction)

for different models. Larger accuracies and smaller cross-entropies are better. Within an

update scheme, the † indicates significant improvement (McNemar’s test, p < 0.05) over

the next-best gating mechanism. Within g a gating mechanism, the ∗ indicates significant

improvement over the next-best update scheme. For example, NG+CM is significantly better

than NG+VM, so it receives a †; it is also significantly better than RG+CM, and receives a ∗

as well. These comparisons are conducted only among the pure update schemes (above the

double line). All other models are significantly better than RG+SM (p < 0.01).
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Fig. 6.3 shows a breakdown of the prediction accuracy measures according to whether

the card was MC or TP, and according to whether the student’s answer was correct (C) or

incorrect (IC). Unsurprisingly, all the models have an easier time predicting the student’s

guess when the student is correct, since the predicted parameters θt will often pick the

correct answer. However, this is where the vector and context gates far outperform the

scalar gates. All the models find predicting the incorrect answers of the students difficult.

Moreover, when predicting these incorrect answers, the RG models do slightly better than

the NG models.

The models obviously have higher accuracy when predicting student answers for MC

cards than for TP cards, as MC cards have fewer options. Again, within both of these

modalities, the vector and context gates outperform the scalar gate.
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(a) a student with quiz score 6/7
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Figure 6.4: Predicting a specific student’s responses. For each response, the plot shows

our model’s improvement in log-probability over the uniform baseline model. TP cards are

the square markers connected by solid lines (the final 7 squares are the quiz), while MC

cards—which have a much higher baseline—are the circle markers connected by dashed

lines. Hollow and solid markers indicate correct and incorrect answers respectively. The

RNG+CM model is shown in blue and the FG+SM model in red.

Finally, Fig. 6.4 examines how these models behave when making specific predictions over

a training sequence for a single student. At each step we plot the difference in log-probability

between our model and a uniform baseline model. Thus, a marker above 0 means that our

model assigned the student’s answer a probability higher than chance.10 To contrast the

performance difference, we show both the highest-accuracy model (RNG+CM) and the

lowest-accuracy model (RG+SM). For a high-scoring student (Fig. 6.4a), we see RNG+CM

10For MC cards, the chance probability is in { 15 , 14 , 13}—depending on how many options remain—while
for TP cards it is 1

39 .
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has a large margin over RG+SM and a slight upward trend. A higher probability than

chance is noticeable even when the student makes mistakes (indicated by hollow markers).

In contrast, for an average student (Fig. 6.4b), the margin between the two models is less

perceptible. While the CM+NG model is still above the SM+RG line, there are some

answers where CM+NG does very poorly. This is especially true for some of the wrong

answers, for example at training steps 25, 29 and 33. Upon closer inspection into the model’s

error in step 33, we found the prompt received at this training step was ekki melü as a

MC card, which had been shown to the student on three prior occasions, and the student even

answered correctly on one of these occasions. This explains why the model was surprised to

see the student make this error.

6.6.1 Comparison with Less Restrictive Model

Our parametric knowledge tracing architecture models the student as a typical structured

prediction system, which maintains weights for hand-designed features and updates them

roughly as an online learning algorithm would. A natural question is whether this restricted

architecture sacrifices performance for interpretability, or improves performance via useful

inductive bias.

To consider the other end of the spectrum, we implemented a flexible LSTM model in

the style of recent deep learning research. This alternative model predicts each response by

a student (i.e., on an MC or TP card) given the entire history of previous interactions with

that student as summarized by an LSTM. The LSTM architecture is formally capable of
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capturing update rules exactly like those of PKT, but it is far from limited to such rules.

Much like equation (6.1), at each time t we predict

p(yt = y | at) =
exp(ht ·ψ(y))∑︁

y′∈Ot
exp(ht · ψ(y))

(6.13)

for each possible response y in the set of options Ot, where ψ(y) ∈ Rd is a learned

embedding of response y. Here ht ∈ Rd denotes the hidden state of the LSTM, which

evolves as the student interacts with the system and learns. ht depends on the LSTM inputs

for all times < t, just like the knowledge state θt in equations (6.1)–(6.2). It also depends on

the LSTM input for time t, since that specifies the flash card at to which we are predicting

the response yt.

Each flash card a = (x,O) is encoded by a concatenation a of three vectors: a one-hot

39-dimensional vector specifying the foreign phrase x, a 39-dimensional binary vector O

indicating the possible English options in O, and a one-hot vector indicating whether the

card is EX, MC, or TP.

When reading the history of past interactions, the LSTM input at each time step t con-

catenates the vector representation at of the current flash card with vectors at−1,yt−1, f t−1

that describe the student’s experience in round t− 1: these respectively encode the previous

flash card, the student’s response to it (a one-hot 39-dimensional vector), and the resulting

feedback (a 39-dimensional binary vector that indicates the remaining options after feed-

back). Thus, if the student receives no feedback, then f t−1 = Ot−1. Indicative feedback sets

f t−1 = yt−1 or f t−1 = Ot−1 − yt, according to whether the student was correct or incorrect.

Explicit feedback (including for an EX card) sets f t−1 to a one-hot representation of the
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Model Parameters Accuracy(test) Cross-Entropy

RNG+CM ≈ 97K 0.449 1.888

LSTM ≈ 25K 0.429 1.992

Table 6.4: Comparison of our best-performing PKT model (RNG+CM) to our LSTM model.

On our dataset, PKT outperforms the LSTM both in terms of accuracy and cross-entropy.

correct answer. Thus, f t−1 gives the set of “positive” options that we used in the RG update

vector, while Ot−1 gives the set of “negative” options, allowing the LSTM to similarly

update its hidden state from ht−1 to ht to reflect learning.11

As in section 6.4.4, we train the parameters by L2-regularized maximum likelihood, with

early stopping on development data. The weights for the LSTM were initialized uniformly

at random ∼ U(−δ,+δ), where δ = 0.01, and RMSProp was used for gradient descent. We

settled on a regularization coefficient of 0.002 after a line search. The number of hidden

units d was also tuned using line search. Interestingly, a dimensionality of just d = 10

performed best on dev data:12 at this size, the LSTM has fewer parameters than our best

model.

The result is shown in Table 6.4. These results favor our restricted PKT architecture. We
11This architecture is formally able to mimic PKT. We would store θ in the LSTM’s vector of cell activations,

and configure the LSTM’s “input” and “forget” gates to update this according to (6.2) where ut is computed
from the input. Observe that each feature in section 6.4.2 has the form ϕij(x, y) = ξi(x) ·ψj(y). Consider the
hidden unit in h corresponding to this feature, with activation θij . By configuring this unit’s “output” gate to
be ξi(x) (where x is the current foreign phrase given in the input), we would arrange for this hidden unit to
have output ξi(x) · θij , which will be multiplied by ψj(y) in (6.13) to recover θij · ϕij(x, y) just as in (6.1).
(More precisely, the output would be sigmoid(ξi(x) · θij), but we can evade this nonlinearity if we take the
cell activations to be a scaled-down version of θ and scale up the embeddings ψ(y) to compensate.)

12We searched 0.001, 0.002, 0.005, 0.01, 0.02, 0.05 for the regularization coefficient, and
5, 10, 15, 20, 50, 100, 200 for the number of hidden units.
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acknowledge that the LSTM might perform better when a larger training set was available

(which would allow a larger hidden layer), or using a different form of regularization (Sri-

vastava et al., 2014).

Intermediate or hybrid models would of course also be possible. For example, we could

predict p(y | at) via (6.1), defining θt as h⊤
t M , a learned linear function of ht. This variant

would again have access to our hand-designed features ϕ(x, y), so that it would know which

flash cards were similar. In fact θt · ϕ(x, y) in (6.1) equals ht · (Mϕ(x, y)), so M can be

regarded as projecting ϕ(x, y) down to the LSTM’s hidden dimension d, learning how to

weight and use these features. In this variant, the LSTM would no longer need to take at as

part of its input at time t: rather, ht (just like θt in PKT) would be a pure representation of

the student’s knowledge state at time t, capable of predicting yt for any at. This setup more

closely resembles PKT—or the DKT LSTM of Piech et al. (2015). Unlike the DKT paper,

however, it would still predict the student’s specific response, not merely whether they were

right or wrong.

6.7 Conclusion

We have presented a cognitively plausible model that traces a human student’s knowledge as

he or she interacts with a simple online tutoring system. The student must learn to translate

very short inflected phrases from an unfamiliar language into English. Our model assumes

that when a student recalls or guesses the translation, he or she is attempting to solve a

173



CHAPTER 6. KNOWLEDGE TRACING

structured prediction problem of choosing the best translation, based on salient features of

the input-output pair. Specifically, we characterize the student’s knowledge as a vector of

feature weights, which is updated as the student interacts with the system. While the phrasal

features memorize the translations of entire input phrases, the other features can pick up on

the translations of individual words and sub-words, which are reusable across phrases.

We collected and modeled human-subjects data. We experimented with models us-

ing several different update mechanisms, focusing on the student’s treatment of negative

feedback and the degree to which the student tends to update or forget specific weights in

particular contexts. We also found that in comparison to a less constrained LSTM model, we

can better fit the human behavior by using weight update schemes that are broadly consistent

with schemes used in machine learning.

In the future, we plan to experiment with more variants of the model, including variants

that allow noise and personalization. Most important, we mean to use the model for planning

which flash cards, feedback, or other stimuli to show next to a given student.
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Conclusion & Future Direction

This thesis introduces the problem of generating macaronic language texts as a foreign

language learning paradigm. Adult foreign language learning is a challenging task that

requires dedicated time and effort in following a curriculum. We believe the macaronic

framework introduced in this thesis allows a student in engage in language learning while

simply reading any document. We hope that such instruction will be a valuable addition to

the traditional foreign language learning process.

We have made progress towards identifying appropriate data structures to all possible

macaronic configurations for a given sentence, devised a method to model the readability and

guessability of foreign language words and phrases in macaronic configurations and show

how a simple search heuristic can find pedagogically useful macaronic configurations. We

have also presented an interaction mechanism for macaronic documents, hopefully leading

to improved student engagement while gaining the ability to update the student model based
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on feedback. Finally, we also studied sequential modeling of student’s knowledge as they

navigate through a restricted foreign language inflection learning activity.

There are several possible research directions moving forward. We are most interested

in improving methods that follow the generic student model based approach as it allows

us to create macaronic documents from a wide variety of domains without data collection

involving human students. We identify the following limitations currently in the generic

student model based approach:

Capturing uncertainty of L2 word embeddings: Word embeddings are points in a

subspace. Assigning each L2 word with a single point in that subspace ignores uncertainty

associated with that words meaning. This issue might not be very crucial when learning

L1 embeddings, as we can assume (at least for frequent words) that we can learn their

embeddings from different instances in the training data. However, our incremental L2

learning approach assigns/learns an embedding from (initially) just one exposure. Even

subsequent exposures are not batched. Thus, it should be useful to maintain a range (or

distribution) of reasonable embeddings for a new L2 word after each exposure, instead of a

single point in the embedding space.

A possible approach could be to represent each L2 embedding by a multidimensional

Gaussian with a mean vector µ ∈ RD and variance σ2 ∈ RD. Similar ideas have been shown

to help word embedding learning (Vilnis and McCallum, 2014; Athiwaratkun and Wilson,

2017) using “word2vec” style objectives (CBOW or skip-gram) (Mikolov et al., 2013). We

could also employ the recent reparameterization method (Kingma and Welling, 2013).
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Search Heuristics and Planning: We currently employ a simple ”left to right” best-first

search heuristic to search for the “best” macaronic configuration for a given sentence. We

can explore several alternative search heuristics. One simple alternative is to replace the

search ordering from “left to right” to “low-frequency to high-frequency”. That is, we

will try to replace low-frequency words in the sentence with their L2 translations before

trying high-frequency words. This heuristic should provide more opportunities to replace

low-frequency content words at the expense of high-frequency stop words, however, since

high-frequency words are more likely to show up in the rest of the document there will be

other opportunities for the model to replace these with L2 translations. Pilot experiments

with low-frequency to high-frequency (in conjunction with best-first search) outperforms

the left to right heuristic in terms of cosine similarity score as defined in §5.5.2.

Our current scheme does not consider the entire document when searching for the best

macaronic configuration for a sentence. If the machine teacher knows, for example, that a

certain L2 vocabulary item is more guessable in some future part of the document, then it

could use the current sentence to teach a different L2 vocabulary item to the student. Thus,

looking into the future of the document is a possible future direction of research. Our pilot

experiments, using Monte-Carlo tree search to find the best macaronic configuration, also

suggest the same. However, with longer look-ahead horizons search takes more time to

complete which might hinder “online” search.

Contextual Representations from BERT and KL-Net: The cloze language model

used in our generic student model is closely related to sentence representation models such
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as BERT and ELMo (Devlin et al., 2019; Peters et al., 2018). We could use these pretrained

models instead or our cloze language model, however, we would be restricted by the L1

vocabulary used by these large masked language models.

Modified softmax layer in cloze model: Our incremental approach to learning the

embeddings of novel L2 words is scored using cosine similarity (§5.5.1). However, the

initial cloze model (§§ 5.2.1 and 5.2.2) does not take this particular scoring into account.

When training the cloze model on L1 data and during incremental L2 word learning, the

norms of the embeddings are not constrained, leading to common words having larger

norms. This creates a mismatch between how we learn L1 embeddings and L2 embeddings

(incrementally) and how we score them. While it is unclear if this dramatically changes the

resulting macaronic configurations, a possible solution could be to use cosine similarity to

obtain logits during L1 learning and during incremental L2 learning. This would encourage

the initial cloze model to restrict the norms of word embeddings to be close to one.

Phrasal Translations: Finally, the one-to-one lexical translation setup is a limitation as

it only affords for teaching single L2 words and not phrases. Additionally, does it expose

the student to word order differences between the L1 and L2. There are two main challenges

when moving to non-lexical teaching. To address this limitation we would first have to

consider different scoring functions to guide the macaronic configuration search. Currently,

the scoring function (§5.5.1) straight-forward for lexical translation case but not for scoring

L1-L2 phrase pairs especially when also considering word-order differences between an

L1 and L2 phrase. Consequently, we need to address how we represent L2 “knowledge”
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Markup He gave a talk about how education
de

and school kills creativity.

Prediction He gave a talk about how education und schulen kreativität tötet .

Markup
de

It was sombody who was trying to ask a question about Javascript.

Prediction Es war jemand , der versuchte , to ask a question about Javascript .

Markup
de

We were standing on the edge of thousands of acres of
de

cotton.

Prediction Wir standen am rande of thousands of acres of baumwolle .

Markup And we’re building upon innovations of
de

generations who went before us.

Prediction And we’re building upon innovations of generationen , die vor uns gingen .

Table 7.1: Examples of inputs and predicted outputs by our experimental NMT

model trained to generate macaronic language sentences using annotations on the

input sequence. We see that the macaronic language translations are able to correctly

order German portions of the sentences, especially at the sentence ending. The

source-features have also been learned by the NMT model and translations are

faithful to the markup. The case, tokenization and italics added in post.

in our generic student model. Merely, using L2 word embeddings would be insufficient.

One possible research endeavor is to not only learn new L2 word embeddings but also

learn L2 recurrent parameters in an incremental fashion. That is, we can learn a entirely

new L2 cloze language model. To score this cloze model we could use held out fully L2

sentences, perhaps from the remainder of the current document. Apart from redesigning

the generic student model and incremental learning paradigm to enable phrasal L2 learning,

we also have to alter how we generate the macaronic data structure that can support phrasal

macaronic configurations. Creating the back-end macaronic data structure using statistical
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machine translation §1.4 may result in translations that are not accurate. Neural Machine

Translation may provide better partial translations which could be used to generate the

required back-end data structure. We find that we are able to generate fluent macaronic

translations by tagging tokens in the input sequence (which is fully in L1) with either

a Translate or No-Translate tag. Table 7.1 shows examples of generated En-De

(L1-L2) macaronic sentences.

Longitudinal User Modelling: In this thesis, experiments involving human students

were conducted on relatively short time-frames. Modelling long term learning and forgetting

patterns in a macaronic learning setup would lead to better configurations as the machine

teacher can account for student’s forgetting patterns. Such experiments, however, would

exhibit high variation and would require larger number of participants. Generally longer

studies also exhibit poor participant retention.
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